The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34315970
PubMed Central
PMC8316555
DOI
10.1038/s41598-021-94824-y
PII: 10.1038/s41598-021-94824-y
Knihovny.cz E-zdroje
- MeSH
- Bifidobacterium genetika izolace a purifikace MeSH
- feces mikrobiologie MeSH
- mikrobiota * MeSH
- primáti mikrobiologie MeSH
- probiotika MeSH
- RNA ribozomální 16S genetika MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Bifidobacteria, which commonly inhabit the primate gut, are beneficial contributors to host wellbeing. Anatomical differences and natural habitat allow an arrangement of primates into two main parvorders; New World monkeys (NWM) and Old World monkeys (OWM). The number of newly described bifidobacterial species is clearly elevated in NWM. This corresponds to our finding that bifidobacteria were the dominant group of cultivated gut anaerobes in NWM, while their numbers halved in OWM and were often replaced by Clostridiaceae with sarcina morphology. We examined an extended MALDI-TOF MS database as a potential identification tool for rapid screening of bifidobacterial distribution in captive primates. Bifidobacterial isolates of NWM were assigned mainly to species of primate origin, while OWM possessed typically multi-host bifidobacteria. Moreover, bifidobacterial counts reflected the feed specialization of captive primates decreasing from frugivore-insectivores, gummivore-insectivores, frugivore-folivores to frugivore-omnivores. Amplicon sequencing analysis supported this trend with regards to the inverse ratio of Actinobacteria and Firmicutes. In addition, a significantly higher diversity of the bacterial population in OWM was found. The evolution specialization of primates seems to be responsible for Bifidobacterium abundance and species occurrence. Balanced microbiota of captive primates could be supported by optimized prebiotic and probiotic stimulation based on the primate host.
Zobrazit více v PubMed
Arbour JH, Santana SE. A major shift in diversification rate helps explain macroevolutionary patterns in primate species diversity. Evolution. 2017;71:1600–1613. doi: 10.1111/evo.13237. PubMed DOI
Groves, C. Primates (Taxonomy) in The International Encyclopedia of Primatology (ed Augustin Fuentes) (John Wiley & Sons, Inc., 2016).
Cotton A, Clark F, Boubli J, Schwitzer C. IUCN red list of threatened primate species in An Introduction to Primate Conservation 31–18. Oxford University Press; 2016.
Stumpf RM, et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 2016;199:56–66. doi: 10.1016/j.biocon.2016.03.035. DOI
West AG, et al. The microbiome in threatened species conservation. Biol. Conserv. 2019;229:85–98. doi: 10.1016/j.biocon.2018.11.016. DOI
Cunningham AA, Daszak P, Wood JLN. One Health, emerging infectious diseases and wildlife: two decades of progress? Philos. Trans. R. Soc. B: Biol. Sci. 2017;372:20160167. doi: 10.1098/rstb.2016.0167. PubMed DOI PMC
Ramey AM, Ahlstrom CA. Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. J. Wildl. Dis. 2020;56:1–15. doi: 10.7589/2019-04-099. PubMed DOI
Clayton JB, et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 2016;113:10376–10381. doi: 10.1073/pnas.1521835113. PubMed DOI PMC
Hale VL, et al. Gut microbiota in wild and captive Guizhou snub-nosed monkeys. Rhinopithecus brelichi. Am. J. Primatol. 2019;81:e22989. PubMed
Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr. Opin. Microbiol. 2018;44:34–40. doi: 10.1016/j.mib.2018.07.003. PubMed DOI PMC
Mahnert A, et al. Man-made microbial resistances in built environments. Nat. Commun. 2019;10:1–12. doi: 10.1038/s41467-019-08864-0. PubMed DOI PMC
Amato KR, et al. Using the gut microbiota as a novel tool for examining colobine primate GI health. Glob. Ecol. Conserv. 2016;7:225–237. doi: 10.1016/j.gecco.2016.06.004. DOI
Zhu, H. et al. Diarrhea-associated intestinal microbiota in captive Sichuan golden snub-nosed monkeys (Rhinopithecus roxellana). Microbes Environ. ME17163 (2018). PubMed PMC
Campbell TP, et al. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 2020;14:1584–1599. doi: 10.1038/s41396-020-0634-2. PubMed DOI PMC
Buzzard PJ. Ecological partitioning of Cercopithecus campbelli, C. petaurista, and C. diana in the Taï Forest. Int. J. Primatol. 2006;27:529–558. doi: 10.1007/s10764-006-9022-7. DOI
Chapman, C. A. et al. The guenons: diversity and adaptation in African monkeys. 325–350 (Springer, 2004).
Krishnadas M, Chandrasekhara K, Kumar A. The response of the frugivorous lion-tailed macaque (Macaca silenus) to a period of fruit scarcity. Am. J. Primatol. 2011;73:1250–1260. doi: 10.1002/ajp.20997. PubMed DOI
Swedell L, Hailemeskel G, Schreier A. Composition and seasonality of diet in wild hamadryas baboons: preliminary findings from Filoha. Folia Primatol. 2008;79:476–490. doi: 10.1159/000164431. PubMed DOI
Basabose AK. Diet composition of chimpanzees inhabiting the montane forest of Kahuzi, Democratic Republic of Congo. Am. J. Primatol. 2002;58:1–21. doi: 10.1002/ajp.10049. PubMed DOI
McLennan MR, Ganzhorn JU. Nutritional characteristics of wild and cultivated foods for chimpanzees (Pan troglodytes) in agricultural landscapes. Int. J. Primatol. 2017;38:122–150. doi: 10.1007/s10764-016-9940-y. DOI
Newton-Fisher NE. The diet of chimpanzees in the Budongo Forest Reserve Uganda. Afr. J. Ecol. 1999;37:344–354. doi: 10.1046/j.1365-2028.1999.00186.x. DOI
Bach TH, Chen J, Hoang MD, Beng KC, Nguyen VT. Feeding behavior and activity budget of the southern yellow-cheeked crested gibbons (Nomascus gabriellae) in a lowland tropical forest. Am. J. Primatol. 2017;79:e22667. doi: 10.1002/ajp.22667. PubMed DOI
Fan P-F, Fei H-L, Scott MB, Zhang W, Ma C-Y. Habitat and food choice of the critically endangered cao vit gibbon (Nomascus nasutus) in China: implications for conservation. Biol. Conserv. 2011;144:2247–2254. doi: 10.1016/j.biocon.2011.05.016. DOI
Fan PF, Fei HL, Ma CY. Behavioral responses of cao vit gibbon (Nomascus nasutus) to variations in food abundance and temperature in Bangliang, Jingxi China. Am. J. Primatol. 2012;74:632–641. doi: 10.1002/ajp.22016. PubMed DOI
McConkey KR, Ario A, Aldy F, Chivers DJ. Influence of forest seasonality on gibbon food choice in the rain forests of Barito Ulu Central Kalimantan. Int. J. Primatol. 2003;24:19–32. doi: 10.1023/A:1021490327385. DOI
Amora TD, BeltrÃO-Mendes R, Ferrari SF. Use of alternative plant resources by common marmosets (Callithrix jacchus) in the semi-arid Caatinga scrub forests of northeastern Brazil. Am. J. Primatol. 2013;75:333–341. doi: 10.1002/ajp.22110. PubMed DOI
Dietz JM, Peres CA, Pinder L. Foraging ecology and use of space in wild golden lion tamarins (Leontopithecus rosalia) Am. J. Primatol. 1997;41:289–305. doi: 10.1002/(SICI)1098-2345(1997)41:4<289::AID-AJP2>3.0.CO;2-T. PubMed DOI
Garber, P. A. Feeding ecology and behaviour of the genus Saguinus. Marmosets and tamarins: systematics behaviour and ecology (1993).
Heymann EW, Knogge C, Tirado Herrera ER. Vertebrate predation by sympatric tamarins, Saguinus mystax and Saguinus fuscicollis. Am. J. Primatol. 2000;51:153–158. doi: 10.1002/(SICI)1098-2345(200006)51:2<153::AID-AJP5>3.0.CO;2-T. PubMed DOI
Porter LM. Dietary differences among sympatric Callitrichinae in northern Bolivia: Callimico goeldii, Saguinus fuscicollis and S. labiatus. Int. J. Primatol. 2001;22:961–992. doi: 10.1023/A:1012013621258. DOI
Anapol F, Lee S. Morphological adaptation to diet in platyrrhine primates. Am. J. Phys. Anthropol. 1994;94:239–261. doi: 10.1002/ajpa.1330940208. PubMed DOI
Nash LT. Dietary, behavioral, and morphological aspects of gummivory in primates. Am. J. Phys. Anthropol. 1986;29:113–137. doi: 10.1002/ajpa.1330290505. DOI
Abreu F, De la Fuente MFC, Schiel N, Souto A. Feeding ecology and behavioral adjustments: flexibility of a small neotropical primate (Callithrix jacchus) to survive in a semiarid environment. Mammal Res. 2016;61:221–229. doi: 10.1007/s13364-016-0262-4. DOI
Cunha AA, Vieira MV, Grelle CEV. Preliminary observations on habitat, support use and diet in two non-native primates in an urban Atlantic forest fragment: the capuchin monkey (Cebus sp.) and the common marmoset (Callithrix jacchus) in the Tijuca forest Rio de Janeiro. Urban Ecosyst. 2006;9:351–359. doi: 10.1007/s11252-006-0005-4. DOI
Passamani M, Rylands AB. Feeding behavior of Geoffroy's marmoset (Callithrix geoffroyi) in an Atlantic forest fragment of south-eastern Brazil. Primates. 2000;41:27–38. doi: 10.1007/BF02557459. PubMed DOI
Veracini, C. Habitat use and ranging behavior of the silvery marmoset (Mico argentatus) at Caxiuanã National Forest (eastern Brazilian Amazonia) in The smallest anthropoids 221–240 (Springer, 2009).
Yépez P, De La Torre S, Snowdon CT. Interpopulation differences in exudate feeding of pygmy marmosets in Ecuadorian Amazonia. Am. J. Primatol. 2005;66:145–158. doi: 10.1002/ajp.20134. PubMed DOI
Hale VL, et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 2018;75:515–527. doi: 10.1007/s00248-017-1041-8. PubMed DOI
Amato KR, et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra) Microb. Ecol. 2015;69:434–443. doi: 10.1007/s00248-014-0554-7. PubMed DOI
Frankel JS, Mallott EK, Hopper LM, Ross SR, Amato KR. The effect of captivity on the primate gut microbiome varies with host dietary niche. Am. J. Primatol. 2019;81:e23061. doi: 10.1002/ajp.23061. PubMed DOI
McKenzie VJ, et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 2017;57:690–704. doi: 10.1093/icb/icx090. PubMed DOI PMC
Lugli, G. A. et al. Evolutionary development and co‐phylogeny of primate‐associated bifidobacteria. Environ. Microbiol. (2020). PubMed
Milani C, et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 2017;11:2834–2847. doi: 10.1038/ismej.2017.138. PubMed DOI PMC
Lugli GA, et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genom. 2017;18:568. doi: 10.1186/s12864-017-3955-4. PubMed DOI PMC
Pokusaeva K, Fitzgerald GF, van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011;6:285–306. doi: 10.1007/s12263-010-0206-6. PubMed DOI PMC
Stewart CJ, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562:583–588. doi: 10.1038/s41586-018-0617-x. PubMed DOI PMC
Orkin JD, et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 2019;13:183–196. doi: 10.1038/s41396-018-0256-0. PubMed DOI PMC
Neuzil-Bunesova, V. et al. Five novel bifidobacterial species isolated from faeces of primates in two Czech zoos: Bifidobacterium erythrocebi sp. nov., Bifidobacterium moraviense sp. nov., Bifidobacterium oedipodis sp. nov., Bifidobacterium olomucense sp. nov. and Bifidobacterium panos sp. nov. Int. J. Syst. Evol. Microbiol. (2020). PubMed
Duranti S, et al. Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. Nov. and Bifidobacterium leontopitheci sp. nov. Int. J. Syst. Evol. Microbiol. 2020;70:2288–2297. doi: 10.1099/ijsem.0.004032. PubMed DOI
Modesto, M. et al. Bifidobacterium primatium sp. nov., Bifidobacterium scaligerum sp. nov., Bifidobacterium felsineum sp. nov. and Bifidobacterium simiarum sp. nov.: Four novel taxa isolated from the faeces of the cotton top tamarin (Saguinus oedipus) and the emperor tamarin (Saguinus imperator). Syst. Appl. Microbiol. (2018). PubMed
Neuzil-Bunesova V, et al. Bifidobacterium canis sp nov a novel member of the Bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (Canis lupus f. familiaris) Int. J. Syst. Evol. Microbiol. 2020;70:5040–5047. doi: 10.1099/ijsem.0.004378. PubMed DOI
Vlková E, et al. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria. Anaerobe. 2015;34:27–33. doi: 10.1016/j.anaerobe.2015.04.001. PubMed DOI
Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015;26:26191. PubMed PMC
WagnerMackenzie B, et al. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ. Microbiol. 2017;19:381–392. doi: 10.1111/1462-2920.13632. PubMed DOI
Arboleya, S., Watkins, C., Stanton, C. & Ross, R. P. Gut bifidobacteria populations in human health and aging. Front. Microbiol.7 (2016). PubMed PMC
Binda C, et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 2018;50:421–428. doi: 10.1016/j.dld.2018.02.012. PubMed DOI
Tojo R, et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J. Gastroenterol. 2014;20:15163. doi: 10.3748/wjg.v20.i41.15163. PubMed DOI PMC
Rodriguez CI, Martiny JBH. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genom. 2020;21:1–12. doi: 10.1186/s12864-019-6419-1. PubMed DOI PMC
Sharma V, Mobeen F, Prakash T. Exploration of survival traits, probiotic determinants, host interactions, and functional evolution of bifidobacterial genomes using comparative genomics. Genes. 2018;9:477. doi: 10.3390/genes9100477. PubMed DOI PMC
Sun Z, et al. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium. a snapshot of its genetic diversity and evolution. PLoS One. 2015;10:0117912. PubMed PMC
Frey JC, et al. Fecal bacterial diversity in a wild gorilla. Appl. Environ. Microbiol. 2006;72:3788–3792. doi: 10.1128/AEM.72.5.3788-3792.2006. PubMed DOI PMC
Makovska, M., Modrackova, N., Bolechova, P., Drnkova, B. & Neuzil-Bunesova, V. Antibiotic susceptibility screening of primate-associated Clostridium ventriculi. Anaerobe, 102347 (2021). PubMed
Ushida, K. et al. Draft genome sequences of Sarcina ventriculi strains isolated from wild Japanese macaques in Yakushima Island. Genome announcements4 (2016). PubMed PMC
Owens LA, et al. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat. Commun. 2021;12:1–16. doi: 10.1038/s41467-020-20314-w. PubMed DOI PMC
Vlková E, Rada V, Šmehilová M, Killer J. Auto-aggregation and co-aggregation ability in bifidobacteria and clostridia. Folia Microbiol. 2008;53:263–269. doi: 10.1007/s12223-008-0040-z. PubMed DOI
Wang L, et al. Adhesive Bifidobacterium induced changes in cecal microbiome alleviated constipation in mice. Front. Microbiol. 2019;10:1721. doi: 10.3389/fmicb.2019.01721. PubMed DOI PMC
Wei Y, et al. Protective effects of bifidobacterial strains against toxigenic Clostridium difficile. Front. Microbiol. 2018;9:888. doi: 10.3389/fmicb.2018.00888. PubMed DOI PMC
Guittar J, Shade A, Litchman E. Trait-based community assembly and succession of the infant gut microbiome. Nature Commun. 2019;10:1–11. doi: 10.1038/s41467-019-08377-w. PubMed DOI PMC
Moore RE, Townsend SD. Temporal development of the infant gut microbiome. Open Biol. 2019;9:190128. doi: 10.1098/rsob.190128. PubMed DOI PMC
Korpela K, et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome. 2018;6:1–11. doi: 10.1186/s40168-018-0567-4. PubMed DOI PMC
Timperio AM, Gorrasi S, Zolla L, Fenice M. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PloS One. 2017;12:0181860. doi: 10.1371/journal.pone.0181860. PubMed DOI PMC
Bäckhed F, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703. doi: 10.1016/j.chom.2015.04.004. PubMed DOI
Brown CJ, et al. Comparative genomics of Bifidobacterium species isolated from marmosets and humans. Am. J. Primatol. 2019;81:e983. doi: 10.1002/ajp.22983. PubMed DOI PMC
Killer J, et al. Gene encoding the CTP synthetase as an appropriate molecular tool for identification and phylogenetic study of the family Bifidobacteriaceae. MicrobiologyOpen. 2018;7:e00579. doi: 10.1002/mbo3.579. PubMed DOI PMC
Milani C, et al. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. FEMS Microbiol. Ecol. 2014;90:493–503. PubMed
Srinivasan R, et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS One. 2015;10:e0117617. doi: 10.1371/journal.pone.0117617. PubMed DOI PMC
Maiden MCJ, et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Rev. Microbiol. 2013;11:728–736. doi: 10.1038/nrmicro3093. PubMed DOI PMC
Lugli GA, et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Syst. Appl. Microbiol. 2018;41:173–183. doi: 10.1016/j.syapm.2018.01.002. PubMed DOI
Malukiewicz, J. et al. The effects of host taxon, hybridization, and environment on the gut microbiome of Callithrix marmosets. BioRxiv, 708255 (2019).
Amato KR, et al. Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia. 2016;180:717–733. doi: 10.1007/s00442-015-3507-z. PubMed DOI
Hernández‐Rodríguez, D., Vásquez‐Aguilar, A. A., Serio‐Silva, J. C., Rebollar, E. A. & Azaola‐Espinosa, A. Molecular detection of Bifidobacterium spp. in faeces of black howler monkeys (Alouatta pigra). J. Med. Primatol.48, 99–105 (2019). PubMed
Zhu L, et al. Sex bias in gut microbiome transmission in newly paired marmosets (Callithrix jacchus) Msystems. 2020;5:e00910–00919. doi: 10.1128/mSystems.00910-19. PubMed DOI PMC
Kap YS, et al. Targeted diet modification reduces multiple sclerosis–like disease in adult marmoset monkeys from an outbred colony. J. Immunol. 2018;201:3229–3243. doi: 10.4049/jimmunol.1800822. PubMed DOI
Ren T, Grieneisen LE, Alberts SC, Archie EA, Wu M. Development, diet and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ. Microbiol. 2016;18:1312–1325. doi: 10.1111/1462-2920.12852. PubMed DOI PMC
Xu B, et al. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genom. 2015;16:1–11. doi: 10.1186/1471-2164-16-1. PubMed DOI PMC
Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 2005;59:155–189. doi: 10.1146/annurev.micro.59.030804.121041. PubMed DOI
Killer, J. et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int. J. Syst. Evol. Microbiol.61, 1315–1321 (2011). PubMed
Amato KR, et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 2019;13:576–587. doi: 10.1038/s41396-018-0175-0. PubMed DOI PMC
Garber, P. A., Mallott, E. K., Porter, L. M. & Gomez, A. The gut microbiome and metabolome of saddleback tamarins (Leontocebus weddelli): Insights into the foraging ecology of a small‐bodied primate. Am. J. Primatol.81, e23003 (2019). PubMed
Gralka M, Szabo R, Stocker R, Cordero OX. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 2020;30:R1176–R1188. doi: 10.1016/j.cub.2020.08.007. PubMed DOI
Clayton JB, et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci. Rep. 2018;8:1–16. doi: 10.1038/s41598-018-29277-x. PubMed DOI PMC
Koo BS, et al. Idiopathic chronic diarrhea associated with dysbiosis in a captive cynomolgus macaque (Macaca fascicularis) J. Med. Primatol. 2020;49:56–59. doi: 10.1111/jmp.12447. PubMed DOI
Krynak, K. L., Burke, D. J., Martin, R. A. & Dennis, P. M. Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). FEMS Microbiol. Lett.364 (2017). PubMed
Modrackova, N. et al. Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. Bioact. Carbohydr. Diet. Fibre20, 100199 (2019).
McKenzie VJ, Kueneman JG, Harris RN. Probiotics as a tool for disease mitigation in wildlife: insights from food production and medicine. Ann. N. Y. Acad. Sci. 2018;1429:18–30. doi: 10.1111/nyas.13617. PubMed DOI
Hicks AL, et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 2018;9:1–18. doi: 10.1038/s41467-018-04204-w. PubMed DOI PMC
Hungate, R. E. & Macy, J. The roll-tube method for cultivation of strict anaerobes. Bulletins from the ecological research committee, 123–126 (1973).
Rada V, Petr J. A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods. 2000;43:127–132. doi: 10.1016/S0167-7012(00)00205-0. PubMed DOI
Orban JI, Patterson JA. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J. Microbiol. Methods. 2000;40:221–224. doi: 10.1016/S0167-7012(00)00133-0. PubMed DOI
Kim BJ, Kim H-Y, Yun Y-J, Kim B-J, Kook Y-H. Differentiation of Bifidobacterium species using partial RNA polymerase β-subunit (rpoB) gene sequences. Int. J. Syst. Evol. Microbiol. 2010;60:2697–2704. doi: 10.1099/ijs.0.020339-0. PubMed DOI
Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. 41 edn 95–98 ([London]: Information Retrieval Ltd., c1979-c2000.).
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Callahan BJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Quast C, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Ress. 2012;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Shannon, C. E. & Weaver, W. The mathematical theory of information. Urbana: University of Illinois Press97 (1949).
Pielou EC. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966;13:131–144. doi: 10.1016/0022-5193(66)90013-0. DOI
Mandal S, et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 2015;26:27663. PubMed PMC
fundamental algorithms for scientific computing in Python Virtanen, P. et al. SciPy 1.0. Nat. Methods. 2020;17:261–272. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC
Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python in Proceedings of the 9th Python in Science Conference57 (Austin, TX, 2010).
MacKinnon JG, White H. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. J. Econom. 1985;29:305–325. doi: 10.1016/0304-4076(85)90158-7. DOI
Defined Pig Microbiota Mixture as Promising Strategy against Salmonellosis in Gnotobiotic Piglets
Culture-dependent screening of endospore-forming clostridia in infant feces
Species and Strain Variability among Sarcina Isolates from Diverse Mammalian Hosts
Feed Insects as a Reservoir of Granadaene-Producing Lactococci