• This record comes from PubMed

Culture-dependent screening of endospore-forming clostridia in infant feces

. 2023 Nov 17 ; 23 (1) : 347. [epub] 20231117

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37978420
PubMed Central PMC10655253
DOI 10.1186/s12866-023-03104-4
PII: 10.1186/s12866-023-03104-4
Knihovny.cz E-resources

BACKGROUND: Only a few studies dealt with the occurrence of endospore-forming clostridia in the microbiota of infants without obvious health complications. METHODS: A methodology pipeline was developed to determine the occurrence of endospore formers in infant feces. Twenty-four fecal samples (FS) were collected from one infant in monthly intervals and were subjected to variable chemical and heat treatment in combination with culture-dependent analysis. Isolates were identified by MALDI-TOF mass spectrometry, 16S rRNA gene sequencing, and characterized with biochemical assays. RESULTS: More than 800 isolates were obtained, and a total of 21 Eubacteriales taxa belonging to the Clostridiaceae, Lachnospiraceae, Oscillospiraceae, and Peptostreptococcaceae families were detected. Clostridium perfringens, C. paraputrificum, C. tertium, C. symbiosum, C. butyricum, and C. ramosum were the most frequently identified species compared to the rarely detected Enterocloster bolteae, C. baratii, and C. jeddahense. Furthermore, the methodology enabled the subsequent cultivation of less frequently detectable gut taxa such as Flavonifractor plautii, Intestinibacter bartlettii, Eisenbergiella tayi, and Eubacterium tenue. The isolates showed phenotypic variability regarding enzymatic activity, fermentation profiles, and butyrate production. CONCLUSIONS: Taken together, this approach suggests and challenges a cultivation-based pipeline that allows the investigation of the population of endospore formers in complex ecosystems such as the human gastrointestinal tract.

See more in PubMed

Derrien M, Alvarez AS, de Vos WM. The gut microbiota in the First Decade of Life. Trends Microbiol. 2019;27(12):997–1010. doi: 10.1016/j.tim.2019.08.001. PubMed DOI

Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019;68(6):1108–14. doi: 10.1136/gutjnl-2018-317503. PubMed DOI PMC

Avershina E, Larsen MG, Aspholm M, Lindback T, Storrø O, Øien T, Johnsen R, Rudi K. Culture dependent and Independent analyses suggest a low level of sharing of endospore-forming species between mothers and their children. Sci Rep. 2020;10(1):1832. doi: 10.1038/s41598-020-58858-y. PubMed DOI PMC

Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38(5):996–1047. doi: 10.1111/1574-6976.12075. PubMed DOI PMC

Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. doi: 10.1038/nature11234. PubMed DOI PMC

Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30(3):332–8. doi: 10.1097/MOG.0000000000000057. PubMed DOI PMC

Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533(7604):543–6. doi: 10.1038/nature17645. PubMed DOI PMC

Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E, Stares MD, Dunn M, Mkandawire TT, Zhu A, Shao Y, Pike LJ, Louie T, Browne HP, Mitchell AL, Neville BA, Finn RD, Lawley TD. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol. 2019;37(2):186–92. doi: 10.1038/s41587-018-0009-7. PubMed DOI PMC

Egan M, Dempsey E, Ryan CA, Ross RP, Stanton C. The Sporobiota of the Human Gut. Gut Microbes. 2021 Jan-Dec;13(1):1–17. doi: 10.1080/19490976.2020.1863134. PMID: 33406976; PMCID: PMC7801112. PubMed PMC

Appert O, Garcia AR, Frei R, Roduit C, Constancias F, Neuzil-Bunesova V, Ferstl R, Zhang J, Akdis C, Lauener R, Lacroix C, Schwab C. Initial butyrate producers during infant gut microbiota development are endospore formers. Environ Microbiol. 2020;22(9):3909–21. doi: 10.1111/1462-2920.15167. PubMed DOI

Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Anim Sci Biotechnol. 2020;11:24. doi: 10.1186/s40104-019-0402-1. PubMed DOI PMC

Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8. doi: 10.1111/j.1574-6968.2009.01514.x. PubMed DOI

Senn V, Bassler D, Choudhury R, Scholkmann F, Righini-Grunder F, Vuille-Dit-Bile RN, Restin T. Microbial Colonization from the Fetus to Early Childhood-A Comprehensive Review. Front Cell Infect Microbiol. 2020;10:573735. doi: 10.3389/fcimb.2020.573735. PubMed DOI PMC

Lagier JC, Hugon P, Khelaifia S, Fournier PE, La Scola B, Raoult D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev. 2015;28(1):237–64. doi: 10.1128/CMR.00014-14. PubMed DOI PMC

Tanaka M, Onizuka S, Mishima R, Nakayama J. Cultural isolation of spore-forming bacteria in human feces using bile acids. Sci Rep. 2020;10(1):15041. doi: 10.1038/s41598-020-71883-1. PubMed DOI PMC

Hungate RE, Macy J. The roll-tube method for cultivation of strict anaerobes. Bulletins from the Ecological Research Committee, 1973; 123–6.

Fakhry S, Sorrentini I, Ricca E, De Felice M, Baccigalupi L. Characterization of spore forming Bacilli isolated from the human gastrointestinal tract. J Appl Microbiol. 2008;105(6):2178-86. 10.1111/j.1365-2672.2008.03934.x. PMID: 19120663. PubMed

Setlow P, Wang S, Li YQ. Germination of spores of the orders Bacillales and Clostridiales. Annu Rev Microbiol. 2017;71:459–77. doi: 10.1146/annurev-micro-090816-093558. PubMed DOI

Modrackova N, Stovicek A, Burtscher J, Bolechova P, Killer J, Domig KJ, Neuzil-Bunesova V. The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host. Sci Rep. 2021;11(1):15273. doi: 10.1038/s41598-021-94824-y. PubMed DOI PMC

Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC

Miller CS, Handley KM, Wrighton KC, Frischkorn KR, Thomas BC, Banfield JF. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS ONE. 2013;8(2):e56018. doi: 10.1371/journal.pone.0056018. PubMed DOI PMC

Hall T, Biosciences I, Carlsbad C. BioEdit: an important Software for Molecular Biology. GERF Bull Biosci. 2011;2:60–1.

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of Progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67(5):1613–7. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC

Kearney SM, Gibbons SM, Poyet M, Gurry T, Bullock K, Allegretti JR, Clish CB, Alm EJ. Endospores and other lysis-resistant bacteria comprise a widely shared core community within the human microbiota. ISME J. 2018;12(10):2403–16. doi: 10.1038/s41396-018-0192-z. PubMed DOI PMC

Ito T, Sekizuka T, Kishi N, Yamashita A, Kuroda M. Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria. Gut Microbes. 2019;10(1):77–91. doi: 10.1080/19490976.2018.1491265. PubMed DOI PMC

Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, Segata N, Bork P. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 2018;28(4):561–8. doi: 10.1101/gr.233940.117. PubMed DOI PMC

Ferraris L, Butel MJ, Campeotto F, Vodovar M, Rozé JC, Aires J. Clostridia in premature neonates’ gut: incidence, antibiotic susceptibility, and perinatal determinants influencing colonization. PLoS ONE. 2012;7(1):e30594. doi: 10.1371/journal.pone.0030594. PubMed DOI PMC

Fallani M, Amarri S, Uusijarvi A, Adam R, Khanna S, Aguilera M, Gil A, Vieites JM, Norin E, Young D, Scott JA, Doré J, Edwards CA, The Infabio Team Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiol (Reading) 2011;157(Pt 5):1385–92. doi: 10.1099/mic.0.042143-0. PubMed DOI

Kiu R, Caim S, Alcon-Giner C, Belteki G, Clarke P, Pickard D, Dougan G, Hall LJ. Preterm Infant-Associated Clostridium tertium, Clostridium cadaveris, and Clostridium paraputrificum strains: genomic and evolutionary insights. Genome Biol Evol. 2017;9(10):2707–14. doi: 10.1093/gbe/evx210. PubMed DOI PMC

Cassir N, Benamar S, Khalil JB, Croce O, Saint-Faust M, Jacquot A, Million M, Azza S, Armstrong N, Henry M, Jardot P, Robert C, Gire C, Lagier JC, Chabrière E, Ghigo E, Marchandin H, Sartor C, Boutte P, Cambonie G, Simeoni U, Raoult D. La Scola B. Clostridium butyricum strains and Dysbiosis Linked to Necrotizing enterocolitis in Preterm neonates. Clin Infect Dis. 2015;61(7):1107–15. doi: 10.1093/cid/civ468. PubMed DOI

Brook I, Long SS. Anaerobic bacteria: classification, normal flora, and clinical concepts. In: Long SS, Fischer M, Prober GC, editors. Principles and practice of pediatric infectious Diseases. Elsevier; 2018. pp. 987–95.

Ferretti P, Wirbel J, Maistrenko OM, Van Rossum T, Alves R, Fullam A, Akanni W, Schudoma C, Schwarz A, Thielemann R, Thomas L, Kandels S, Hercog R, Telzerow A, Letunic I, Kuhn M, Zeller G, Thomas SB, Schmidt TSB, C. Difficile may be overdiagnosed in adults and is a prevalent commensal in infants. Peer Bork bioRxiv. 2022 doi: 10.1101/2022.02.16.480740. DOI

Garrido D, Ruiz-Moyano S, Mills DA. Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. Anaerobe. 2012;18(4):430–5. doi: 10.1016/j.anaerobe.2012.04.012. PubMed DOI PMC

Schimmel P, Kleinjans L, Bongers RS, Knol J, Belzer C. Breast milk urea as a nitrogen source for urease positive Bifidobacterium infantis. FEMS Microbiol Ecol. 2021;97(3):fiab019. doi: 10.1093/femsec/fiab019. PubMed DOI PMC

Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, Seck EH, Dubourg G, Durand G, Mourembou G, Guilhot E, Togo A, Bellali S, Bachar D, Cassir N, Bittar F, Delerce J, Mailhe M, Ricaboni D, Bilen M, Dangui Nieko NP, Dia Badiane NM, Valles C, Mouelhi D, Diop K, Million M, Musso D, Abrahão J, Azhar EI, Bibi F, Yasir M, Diallo A, Sokhna C, Djossou F, Vitton V, Robert C, Rolain JM, La Scola B, Fournier PE, Levasseur A, Raoult D. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. 2016;1:16203. 10.1038/nmicrobiol.2016.203. PMID: 27819657. PubMed

Ludwig W, Viver T, Westram R, Francisco Gago J, Bustos-Caparros E, Knittel K, Amann R, Rossello-Mora R. Release LTP_12_2020, featuring a new ARB alignment and improved 16S rRNA tree for prokaryotic type strains. Syst Appl Microbiol. 2021;44(4):126218. doi: 10.1016/j.syapm.2021.126218. PubMed DOI

Bartlett A, Padfield D, Lear L, Bendall R, Vos M. A comprehensive list of bacterial pathogens infecting humans. Microbiology (Reading). 2022;168(12). 10.1099/mic.0.001269. PMID: 36748702. PubMed

Ohashi Y, Fujisawa T. Analysis of Clostridiumcluster XI bacteria in human feces. Biosci Microbiota Food Health. 2019;38(2):65–8. doi: 10.12938/bmfh.18-023. PubMed DOI PMC

Saggese A, Baccigalupi L, Ricca E. Spore formers as beneficial microbes for humans and animals. Appl Microbiol. 2021;3498–509. 10.3390/applmicrobiol1030032.

Cassir N, Benamar S, La Scola B. Clostridium butyricum: from beneficial to a new emerging pathogen. Clin Microbiol Infect. 2016;22(1):37–45. doi: 10.1016/j.cmi.2015.10.014. PubMed DOI

Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6. doi: 10.1038/nature12331. PubMed DOI

Ogita T, Yamamoto Y, Mikami A, Shigemori S, Sato T, Shimosato T. Oral administration of Flavonifractor plautii strongly suppresses Th2 Immune responses in mice. Front Immunol. 2020;11:379. doi: 10.3389/fimmu.2020.00379. PubMed DOI PMC

Koopman N, Remijas L, Seppen J, Setlow P, Brul S. Mechanisms and applications of bacterial sporulation and germination in the intestine. Int J Mol Sci. 2022;23(6):3405. doi: 10.3390/ijms23063405. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...