• This record comes from PubMed

Species and Strain Variability among Sarcina Isolates from Diverse Mammalian Hosts

. 2023 May 03 ; 13 (9) : . [epub] 20230503

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/16_019/0000845 The research was funded by European Regional Development Fund-Project, "Centre for the in-vestigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially harmful substances of anthropogenic origin: c

Sarcina spp. has been isolated from the gastrointestinal tracts of diverse mammalian hosts. Their presence is often associated with host health complications, as is evident from many previously published medical case reports. However, only a handful of studies have made proper identification. Most other identifications were solely based on typical Sarcina-like morphology without genotyping. Therefore, the aim of this work was culture detection and the taxonomic classification of Sarcina isolates originating from different mammalian hosts. Sarcina-like colonies were isolated and collected during cultivation analyses of animal fecal samples (n = 197) from primates, dogs, calves of domestic cattle, elephants, and rhinoceroses. The study was carried out on apparently healthy animals kept in zoos or by breeders in the Czech Republic and Slovakia. Selected isolates were identified and compared using 16S rRNA gene sequencing and multi-locus sequence analysis (MLSA; Iles, pheT, pyrG, rplB, rplC, and rpsC). The results indicate the taxonomic variability of Sarcina isolates. S. ventriculi appears to be a common gut microorganism in various captive primates. In contrast, a random occurrence was also recorded in dogs. However, dog isolate N13/4e could represent the next potential novel Sarcina taxonomic unit. Also, a potentially novel Sarcina species was found in elephants, with occurrences in all tested hosts. S. maxima isolates were detected rarely, only in rhinoceroses. Although Sarcina bacteria are often linked to lethal diseases, our results indicate that Sarcina spp. appear to be a common member of the gut microbiota and seem to be an opportunistic pathogen. Further characterization and pathogenic analyses are required.

See more in PubMed

Canale-Parola E. Bergey’s Manual of Systematic Bacteriology. 2nd ed. Volume 3 Springer; New York, NY, USA: 2009. Genus Sarcina. The Firmicutes.

Lawson P.A., Rainey F.A. Proposal to restrict the genus Clostridium prazmowski to Clostridium butyricum and related species. Int. J. Syst. Evol. Microbiol. 2016;66:1009–1016. doi: 10.1099/ijsem.0.000824. PubMed DOI

Dumitru A., Aliuş C., Nica A.E., Antoniac I., Gheorghiță D., Grădinaru S. Fatal outcome of gastric perforation due to infection with Sarcina spp. A case report. IDCases. 2020;19:e00711. PubMed PMC

Tintara S., Rice S., Patel D. Sarcina Organisms: A Potential Cause of Emphysematous Gastritis in a Patient with Gastroparesis. Am. J. Gastroenterol. 2019;114:859. doi: 10.14309/ajg.0000000000000124. PubMed DOI

Singh K. Emphysematous Gastritis Associated with Sarcina ventriculi. Case Rep. Gastroenterol. 2019;13:207–213. doi: 10.1159/000499446. PubMed DOI PMC

Alvin M., Al Jalbout N. Emphysematous gastritis secondary to Sarcina ventriculi. BMJ Case Rep. 2018;2018 doi: 10.1136/bcr-2018-224233. PubMed DOI PMC

de Meij T.G., van Wijk M.P., Mookhoek A., Budding A.E. Ulcerative gastritis and esophagitis in two children with Sarcina ventriculi infection. Front. Med. 2017;4:145. doi: 10.3389/fmed.2017.00145. PubMed DOI PMC

Tartaglia D., Coccolini F., Mazzoni A., Strambi S., Cicuttin E., Cremonini C., Taddei G., Puglisi A.G., Ugolini C., Di Stefano I., et al. Sarcina Ventriculi infection: A rare but fearsome event. A Systematic Review of the Literature. Int. J. Infect. Dis. 2022;115:48–61. doi: 10.1016/j.ijid.2021.11.027. PubMed DOI

Vatn S., Gunnes G., Nybø K., Juul H.M. Possible involvement of Sarcina ventriculi in canine and equine acute gastric dilatation. Acta Vet. Scand. 2000;41:333–337. doi: 10.1186/BF03549642. PubMed DOI PMC

Im J.Y., Sokol S., Duhamel G.E. Gastric dilatation associated with gastric colonization with Sarcina-like bacteria in a cat with chronic enteritis. J. Am. Anim. Hosp. Assoc. 2017;53:321–325. doi: 10.5326/JAAHA-MS-6503. PubMed DOI

DeBey B.M., Blanchard P.C., Durfee P.T. Abomasal bloat associated with Sarcina-like bacteria in goat kids. J. Am. Vet. Med. Assoc. 1996;209:1468. PubMed

Vatn S., Tranulis M.A., Hofshagen M. Sarcina-like bacteria, Clostridium fallax and Clostridium sordellii in lambs with abomasal bloat, haemorrhage and ulcers. J. Comp. Pathol. 2000;122:193–200. doi: 10.1053/jcpa.1999.0363. PubMed DOI

Owens L.A., Colitti B., Hirji I., Pizarro A., Jaffe J.E., Moittié S., Bishop-Lilly K.A., Estrella L.A., Voegtly L.J., Kuhn J.H., et al. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat. Commun. 2021;12:763. doi: 10.1038/s41467-021-21012-x. PubMed DOI PMC

Haroon Al Rasheed M.R., Kim G.J., Senseng C. A Rare Case of Sarcina ventriculi of the Stomach in an Asymptomatic Patient. Int. J. Surg. Pathol. 2016;24:142–145. doi: 10.1177/1066896915610196. PubMed DOI

Makovska M., Modrackova N., Bolechova P., Drnkova B., Neuzil-Bunesova V. Antibiotic susceptibility screening of primate-associated Clostridium ventriculi. Anaerobe. 2021;69:102347. doi: 10.1016/j.anaerobe.2021.102347. PubMed DOI

Bergey D.H.G.M., Whitman W.B., Parte A.C. The actinobacteria. Bergey’s Man. Syst. Bacteriol. 2012;5:171–224.

Modrackova N., Stovicek A., Burtscher J., Bolechova P., Killer J., Domig K.J., Neuzil-Bunesova V. The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host. Sci. Rep. 2021;11:15273. doi: 10.1038/s41598-021-94824-y. PubMed DOI PMC

Marcelino L.P., Valentini Junior D.F., Machado S.M., Schaefer P.G., Rivero R.C., Osvaldt A.B. Sarcina ventriculi a rare pathogen. Autops. Case Rep. 2021;11:e2021337. doi: 10.4322/acr.2021.337. PubMed DOI PMC

Ratuapli S., LamHimlin D., Heigh R. Gastroparesis Associated with Sarcina ventriculi Infection of the Stomach. Am. J. Gastroenterol. 2013;108:S219. doi: 10.14309/00000434-201310001-00735. DOI

Tuuminen T., Suomala P., Vuorinen S. Sarcina ventriculi in blood: The first documented report since 1872. BMC Infect. Dis. 2013;13:169. doi: 10.1186/1471-2334-13-169. PubMed DOI PMC

Bortolotti P., Kipnis E., Faure E., Faure K., Wacrenier A., Fauquembergue M., Penven M., Messaadi S., Marceau L., Dessein R., et al. Clostridium ventriculi bacteremia following acute colonic pseudo-obstruction: A case report. Anaerobe. 2019;59:32–34. doi: 10.1016/j.anaerobe.2019.05.005. PubMed DOI

Sauter J.L., Nayar S.K., Anders P.D., D’Amico M., Butnor K.J., Wilcox R.L. Co-existence of Sarcina Organisms and Helicobacter pylori Gastritis/Duodenitis in Pediatric Siblings. J. Clin. Anat. Pathol. 2013;1:103. doi: 10.17303/jcap.2013.103. PubMed DOI PMC

Neuzil-Bunesova V., Lugli G.A., Modrackova N., Makovska M., Mrazek J., Mekadim C., Musilova S., Svobodova I., Spanek R., Ventura M., et al. Bifidobacterium canis sp. Nov., a novel member of the bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (canis lupus f. familiaris) Int. J. Syst. Evol. Microbiol. 2020;70:5040–5047. doi: 10.1099/ijsem.0.004378. PubMed DOI

Bunešová V., Joch M., Musilová S., Rada V. Bifidobacteria, Lactobacilli, and Short Chain Fatty Acids of Vegetarians and Omnivores. Sci. Agric. Bohem. 2017;48:47–54. doi: 10.1515/sab-2017-0007. DOI

Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC

Hall T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Information Retrieval Ltd.; London, UK: 1999. pp. c1979–c2000.

Hall T., Biosciences I., Carlsbad C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2011;2:60–61.

Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC

Mekadim C., Killer J., Pechar R., Mrazek J. Variable regions of the glys, infb and rplb genes usable as novel genetic markers for identification and phylogenetic purposes of genera belonging to the family propionibacteriaceae. Int. J. Syst. Evol. Microbiol. 2018;68:2697–2705. doi: 10.1099/ijsem.0.002873. PubMed DOI

Edwards G.T., Woodger N.G.A., Barlow A.M., Bell S.J., Harwood D.G., Otter A., Wight A.R. Sarcina-like bacteria associated with bloat in young lambs and calves. Vet. Rec. 2008;163:391–393. doi: 10.1136/vr.163.13.391. PubMed DOI

Tuzcu M., Tuzcu N., Akcakavak G., Celik Z. Diagnosis of Sarcina ventriculi-derived haemorrhagic abomasitis in lambs by histopathology and real-time PCR. Acta Vet. Brno. 2022;91:227–233. doi: 10.2754/avb202291030227. DOI

Ushida K., Tsuchida S., Ogura Y., Hayashi T., Sawada A., Hanya G. Draft genome sequences of Sarcina ventriculi strains isolated from wild Japanese macaques in Yakushima Island. Genome Announc. 2016;4:e01694-15. doi: 10.1128/genomeA.01694-15. PubMed DOI PMC

Frey J.C., Rothman J.M., Pell A.N., Nizeyi J.B., Cranfield M.R., Angert E.R. Fecal bacterial diversity in a wild gorilla. Appl. Environ. Microbiol. 2006;72:3788–3792. doi: 10.1128/AEM.72.5.3788-3792.2006. PubMed DOI PMC

Moeller A.H., Shilts M., Li Y., Rudicell R.S., Lonsdorf E.V., Pusey A.E., Wilson M.L., Hahn B.H., Ochman H. Siv-induced instability of the chimpanzee gut microbiome. Cell Host Microbe. 2013;14:340–345. doi: 10.1016/j.chom.2013.08.005. PubMed DOI PMC

Campbell T., Sun X., Patel V.H., Sanz C., Morgan D., Dantas G. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 2020;14:1584–1599. doi: 10.1038/s41396-020-0634-2. PubMed DOI PMC

West A.G., Waite D.W., Deines P., Bourne D.G., Digby A., McKenzie V.J., Taylor M.W. The microbiome in threatened species conservation. Biol. Conserv. 2019;229:85–98. doi: 10.1016/j.biocon.2018.11.016. DOI

Wagner Mackenzie B., Waite D.W., Hoggard M., Douglas R.G., Taylor M.W., Biswas K. Bacterial community collapse: A meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ. Microbiol. 2017;19:381–392. doi: 10.1111/1462-2920.13632. PubMed DOI

Carding S., Verbeke K., Vipond D.T., Corfe B.M., Owen L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015;26:26191. doi: 10.3402/mehd.v26.26191. PubMed DOI PMC

Rada V., Petr J. A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods. 2000;43:127–132. doi: 10.1016/S0167-7012(00)00205-0. PubMed DOI

Goodwin S., Zeikus J.G. Physiological adaptations of anaerobic bacteria to low pH: Metabolic control of proton motive force in Sarcina ventriculi. J. Bacteriol. 1987;169:2150–2157. doi: 10.1128/jb.169.5.2150-2157.1987. PubMed DOI PMC

Kim M., Oh H.-S., Park S.-C., Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014;64:346–351. doi: 10.1099/ijs.0.059774-0. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...