Species and Strain Variability among Sarcina Isolates from Diverse Mammalian Hosts
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000845
The research was funded by European Regional Development Fund-Project, "Centre for the in-vestigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially harmful substances of anthropogenic origin: c
PubMed
37174565
PubMed Central
PMC10177144
DOI
10.3390/ani13091529
PII: ani13091529
Knihovny.cz E-resources
- Keywords
- Sarcina spp., animals, cultivation, mammalians, microbiota, taxonomy,
- Publication type
- Journal Article MeSH
Sarcina spp. has been isolated from the gastrointestinal tracts of diverse mammalian hosts. Their presence is often associated with host health complications, as is evident from many previously published medical case reports. However, only a handful of studies have made proper identification. Most other identifications were solely based on typical Sarcina-like morphology without genotyping. Therefore, the aim of this work was culture detection and the taxonomic classification of Sarcina isolates originating from different mammalian hosts. Sarcina-like colonies were isolated and collected during cultivation analyses of animal fecal samples (n = 197) from primates, dogs, calves of domestic cattle, elephants, and rhinoceroses. The study was carried out on apparently healthy animals kept in zoos or by breeders in the Czech Republic and Slovakia. Selected isolates were identified and compared using 16S rRNA gene sequencing and multi-locus sequence analysis (MLSA; Iles, pheT, pyrG, rplB, rplC, and rpsC). The results indicate the taxonomic variability of Sarcina isolates. S. ventriculi appears to be a common gut microorganism in various captive primates. In contrast, a random occurrence was also recorded in dogs. However, dog isolate N13/4e could represent the next potential novel Sarcina taxonomic unit. Also, a potentially novel Sarcina species was found in elephants, with occurrences in all tested hosts. S. maxima isolates were detected rarely, only in rhinoceroses. Although Sarcina bacteria are often linked to lethal diseases, our results indicate that Sarcina spp. appear to be a common member of the gut microbiota and seem to be an opportunistic pathogen. Further characterization and pathogenic analyses are required.
See more in PubMed
Canale-Parola E. Bergey’s Manual of Systematic Bacteriology. 2nd ed. Volume 3 Springer; New York, NY, USA: 2009. Genus Sarcina. The Firmicutes.
Lawson P.A., Rainey F.A. Proposal to restrict the genus Clostridium prazmowski to Clostridium butyricum and related species. Int. J. Syst. Evol. Microbiol. 2016;66:1009–1016. doi: 10.1099/ijsem.0.000824. PubMed DOI
Dumitru A., Aliuş C., Nica A.E., Antoniac I., Gheorghiță D., Grădinaru S. Fatal outcome of gastric perforation due to infection with Sarcina spp. A case report. IDCases. 2020;19:e00711. PubMed PMC
Tintara S., Rice S., Patel D. Sarcina Organisms: A Potential Cause of Emphysematous Gastritis in a Patient with Gastroparesis. Am. J. Gastroenterol. 2019;114:859. doi: 10.14309/ajg.0000000000000124. PubMed DOI
Singh K. Emphysematous Gastritis Associated with Sarcina ventriculi. Case Rep. Gastroenterol. 2019;13:207–213. doi: 10.1159/000499446. PubMed DOI PMC
Alvin M., Al Jalbout N. Emphysematous gastritis secondary to Sarcina ventriculi. BMJ Case Rep. 2018;2018 doi: 10.1136/bcr-2018-224233. PubMed DOI PMC
de Meij T.G., van Wijk M.P., Mookhoek A., Budding A.E. Ulcerative gastritis and esophagitis in two children with Sarcina ventriculi infection. Front. Med. 2017;4:145. doi: 10.3389/fmed.2017.00145. PubMed DOI PMC
Tartaglia D., Coccolini F., Mazzoni A., Strambi S., Cicuttin E., Cremonini C., Taddei G., Puglisi A.G., Ugolini C., Di Stefano I., et al. Sarcina Ventriculi infection: A rare but fearsome event. A Systematic Review of the Literature. Int. J. Infect. Dis. 2022;115:48–61. doi: 10.1016/j.ijid.2021.11.027. PubMed DOI
Vatn S., Gunnes G., Nybø K., Juul H.M. Possible involvement of Sarcina ventriculi in canine and equine acute gastric dilatation. Acta Vet. Scand. 2000;41:333–337. doi: 10.1186/BF03549642. PubMed DOI PMC
Im J.Y., Sokol S., Duhamel G.E. Gastric dilatation associated with gastric colonization with Sarcina-like bacteria in a cat with chronic enteritis. J. Am. Anim. Hosp. Assoc. 2017;53:321–325. doi: 10.5326/JAAHA-MS-6503. PubMed DOI
DeBey B.M., Blanchard P.C., Durfee P.T. Abomasal bloat associated with Sarcina-like bacteria in goat kids. J. Am. Vet. Med. Assoc. 1996;209:1468. PubMed
Vatn S., Tranulis M.A., Hofshagen M. Sarcina-like bacteria, Clostridium fallax and Clostridium sordellii in lambs with abomasal bloat, haemorrhage and ulcers. J. Comp. Pathol. 2000;122:193–200. doi: 10.1053/jcpa.1999.0363. PubMed DOI
Owens L.A., Colitti B., Hirji I., Pizarro A., Jaffe J.E., Moittié S., Bishop-Lilly K.A., Estrella L.A., Voegtly L.J., Kuhn J.H., et al. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat. Commun. 2021;12:763. doi: 10.1038/s41467-021-21012-x. PubMed DOI PMC
Haroon Al Rasheed M.R., Kim G.J., Senseng C. A Rare Case of Sarcina ventriculi of the Stomach in an Asymptomatic Patient. Int. J. Surg. Pathol. 2016;24:142–145. doi: 10.1177/1066896915610196. PubMed DOI
Makovska M., Modrackova N., Bolechova P., Drnkova B., Neuzil-Bunesova V. Antibiotic susceptibility screening of primate-associated Clostridium ventriculi. Anaerobe. 2021;69:102347. doi: 10.1016/j.anaerobe.2021.102347. PubMed DOI
Bergey D.H.G.M., Whitman W.B., Parte A.C. The actinobacteria. Bergey’s Man. Syst. Bacteriol. 2012;5:171–224.
Modrackova N., Stovicek A., Burtscher J., Bolechova P., Killer J., Domig K.J., Neuzil-Bunesova V. The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host. Sci. Rep. 2021;11:15273. doi: 10.1038/s41598-021-94824-y. PubMed DOI PMC
Marcelino L.P., Valentini Junior D.F., Machado S.M., Schaefer P.G., Rivero R.C., Osvaldt A.B. Sarcina ventriculi a rare pathogen. Autops. Case Rep. 2021;11:e2021337. doi: 10.4322/acr.2021.337. PubMed DOI PMC
Ratuapli S., LamHimlin D., Heigh R. Gastroparesis Associated with Sarcina ventriculi Infection of the Stomach. Am. J. Gastroenterol. 2013;108:S219. doi: 10.14309/00000434-201310001-00735. DOI
Tuuminen T., Suomala P., Vuorinen S. Sarcina ventriculi in blood: The first documented report since 1872. BMC Infect. Dis. 2013;13:169. doi: 10.1186/1471-2334-13-169. PubMed DOI PMC
Bortolotti P., Kipnis E., Faure E., Faure K., Wacrenier A., Fauquembergue M., Penven M., Messaadi S., Marceau L., Dessein R., et al. Clostridium ventriculi bacteremia following acute colonic pseudo-obstruction: A case report. Anaerobe. 2019;59:32–34. doi: 10.1016/j.anaerobe.2019.05.005. PubMed DOI
Sauter J.L., Nayar S.K., Anders P.D., D’Amico M., Butnor K.J., Wilcox R.L. Co-existence of Sarcina Organisms and Helicobacter pylori Gastritis/Duodenitis in Pediatric Siblings. J. Clin. Anat. Pathol. 2013;1:103. doi: 10.17303/jcap.2013.103. PubMed DOI PMC
Neuzil-Bunesova V., Lugli G.A., Modrackova N., Makovska M., Mrazek J., Mekadim C., Musilova S., Svobodova I., Spanek R., Ventura M., et al. Bifidobacterium canis sp. Nov., a novel member of the bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (canis lupus f. familiaris) Int. J. Syst. Evol. Microbiol. 2020;70:5040–5047. doi: 10.1099/ijsem.0.004378. PubMed DOI
Bunešová V., Joch M., Musilová S., Rada V. Bifidobacteria, Lactobacilli, and Short Chain Fatty Acids of Vegetarians and Omnivores. Sci. Agric. Bohem. 2017;48:47–54. doi: 10.1515/sab-2017-0007. DOI
Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC
Hall T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Information Retrieval Ltd.; London, UK: 1999. pp. c1979–c2000.
Hall T., Biosciences I., Carlsbad C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2011;2:60–61.
Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Mekadim C., Killer J., Pechar R., Mrazek J. Variable regions of the glys, infb and rplb genes usable as novel genetic markers for identification and phylogenetic purposes of genera belonging to the family propionibacteriaceae. Int. J. Syst. Evol. Microbiol. 2018;68:2697–2705. doi: 10.1099/ijsem.0.002873. PubMed DOI
Edwards G.T., Woodger N.G.A., Barlow A.M., Bell S.J., Harwood D.G., Otter A., Wight A.R. Sarcina-like bacteria associated with bloat in young lambs and calves. Vet. Rec. 2008;163:391–393. doi: 10.1136/vr.163.13.391. PubMed DOI
Tuzcu M., Tuzcu N., Akcakavak G., Celik Z. Diagnosis of Sarcina ventriculi-derived haemorrhagic abomasitis in lambs by histopathology and real-time PCR. Acta Vet. Brno. 2022;91:227–233. doi: 10.2754/avb202291030227. DOI
Ushida K., Tsuchida S., Ogura Y., Hayashi T., Sawada A., Hanya G. Draft genome sequences of Sarcina ventriculi strains isolated from wild Japanese macaques in Yakushima Island. Genome Announc. 2016;4:e01694-15. doi: 10.1128/genomeA.01694-15. PubMed DOI PMC
Frey J.C., Rothman J.M., Pell A.N., Nizeyi J.B., Cranfield M.R., Angert E.R. Fecal bacterial diversity in a wild gorilla. Appl. Environ. Microbiol. 2006;72:3788–3792. doi: 10.1128/AEM.72.5.3788-3792.2006. PubMed DOI PMC
Moeller A.H., Shilts M., Li Y., Rudicell R.S., Lonsdorf E.V., Pusey A.E., Wilson M.L., Hahn B.H., Ochman H. Siv-induced instability of the chimpanzee gut microbiome. Cell Host Microbe. 2013;14:340–345. doi: 10.1016/j.chom.2013.08.005. PubMed DOI PMC
Campbell T., Sun X., Patel V.H., Sanz C., Morgan D., Dantas G. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 2020;14:1584–1599. doi: 10.1038/s41396-020-0634-2. PubMed DOI PMC
West A.G., Waite D.W., Deines P., Bourne D.G., Digby A., McKenzie V.J., Taylor M.W. The microbiome in threatened species conservation. Biol. Conserv. 2019;229:85–98. doi: 10.1016/j.biocon.2018.11.016. DOI
Wagner Mackenzie B., Waite D.W., Hoggard M., Douglas R.G., Taylor M.W., Biswas K. Bacterial community collapse: A meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ. Microbiol. 2017;19:381–392. doi: 10.1111/1462-2920.13632. PubMed DOI
Carding S., Verbeke K., Vipond D.T., Corfe B.M., Owen L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015;26:26191. doi: 10.3402/mehd.v26.26191. PubMed DOI PMC
Rada V., Petr J. A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods. 2000;43:127–132. doi: 10.1016/S0167-7012(00)00205-0. PubMed DOI
Goodwin S., Zeikus J.G. Physiological adaptations of anaerobic bacteria to low pH: Metabolic control of proton motive force in Sarcina ventriculi. J. Bacteriol. 1987;169:2150–2157. doi: 10.1128/jb.169.5.2150-2157.1987. PubMed DOI PMC
Kim M., Oh H.-S., Park S.-C., Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014;64:346–351. doi: 10.1099/ijs.0.059774-0. PubMed DOI