Defined Pig Microbiota with a Potential Protective Effect against Infection with Salmonella Typhimurium
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-15621S
Czech Science Foundation
RVO 61388971
Czech Academy of Sciences
PubMed
37110429
PubMed Central
PMC10146858
DOI
10.3390/microorganisms11041007
PII: microorganisms11041007
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial consortium, gnotobiotic piglets, intestinal pathogens, pig intestinal bacteria, probiotic properties testing,
- Publikační typ
- časopisecké články MeSH
A balanced microbiota is a main prerequisite for the host's health. The aim of the present work was to develop defined pig microbiota (DPM) with the potential ability to protect piglets against infection with Salmonella Typhimurium, which causes enterocolitis. A total of 284 bacterial strains were isolated from the colon and fecal samples of wild and domestic pigs or piglets using selective and nonselective cultivation media. Isolates belonging to 47 species from 11 different genera were identified by MALDI-TOF mass spectrometry (MALDI-TOF MS). The bacterial strains for the DPM were selected for anti-Salmonella activity, ability to aggregate, adherence to epithelial cells, and to be bile and acid tolerant. The selected combination of 9 strains was identified by sequencing of the 16S rRNA gene as Bacillus sp., Bifidobacterium animalis subsp. lactis, B. porcinum, Clostridium sporogenes, Lactobacillus amylovorus, L. paracasei subsp. tolerans, Limosilactobacillus reuteri subsp. suis, and Limosilactobacillus reuteri (two strains) did not show mutual inhibition, and the mixture was stable under freezing for at least 6 months. Moreover, strains were classified as safe without pathogenic phenotype and resistance to antibiotics. Future experiments with Salmonella-infected piglets are needed to test the protective effect of the developed DPM.
Zobrazit více v PubMed
Thursby E., Juge N. Introduction to the Human Gut Microbiota. Biochem. J. 2017;474:1823–1836. doi: 10.1042/BCJ20160510. PubMed DOI PMC
Donaldson G.P., Lee S.M., Mazmanian S.K. Gut Biogeography of the Bacterial Microbiota. Nat. Rev. Microbiol. 2016;14:20–32. doi: 10.1038/nrmicro3552. PubMed DOI PMC
Beller L., Deboutte W., Falony G., Vieira-Silva S., Tito R.Y., Valles-Colomer M., Rymenans L., Jansen D., Van Espen L., Papadaki M.I., et al. Successional Stages in Infant Gut Microbiota Maturation. mBio. 2021;12:e0185721. doi: 10.1128/mbio.01857-21. PubMed DOI PMC
Almeida A., Nayfach S., Boland M., Strozzi F., Beracochea M., Shi Z.J., Pollard K.S., Sakharova E., Parks D.H., Hugenholtz P., et al. A Unified Catalog of 204,938 Reference Genomes from the Human Gut Microbiome. Nat. Biotechnol. 2021;39:105–114. doi: 10.1038/s41587-020-0603-3. PubMed DOI PMC
Macpherson A.J., McCoy K.D. Standardised Animal Models of Host Microbial Mutualism. Mucosal Immunol. 2015;8:476–486. doi: 10.1038/mi.2014.113. PubMed DOI PMC
Derrien M., Alvarez A.-S., de Vos W.M. The Gut Microbiota in the First Decade of Life. Trends Microbiol. 2019;27:997–1010. doi: 10.1016/j.tim.2019.08.001. PubMed DOI
Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010;90:859–904. doi: 10.1152/physrev.00045.2009. PubMed DOI
Swain Ewald H.A., Ewald P.W. Natural Selection, The Microbiome, and Public Health. Yale J. Biol. Med. 2018;91:445–455. PubMed PMC
Krautkramer K.A., Fan J., Bäckhed F. Gut Microbial Metabolites as Multi-Kingdom Intermediates. Nat. Rev. Microbiol. 2021;19:77–94. doi: 10.1038/s41579-020-0438-4. PubMed DOI
Metwaly A., Reitmeier S., Haller D. Microbiome Risk Profiles as Biomarkers for Inflammatory and Metabolic Disorders. Nat. Rev. Gastroenterol. Hepatol. 2022;19:383–397. doi: 10.1038/s41575-022-00581-2. PubMed DOI
Ducarmon Q.R., Zwittink R.D., Hornung B.V.H., van Schaik W., Young V.B., Kuijper E.J. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev. 2019;83:e00007-19. doi: 10.1128/MMBR.00007-19. PubMed DOI PMC
Kamada N., Chen G.Y., Inohara N., Núñez G. Control of Pathogens and Pathobionts by the Gut Microbiota. Nat. Immunol. 2013;14:685–690. doi: 10.1038/ni.2608. PubMed DOI PMC
Zeng M.Y., Inohara N., Nuñez G. Mechanisms of Inflammation-Driven Bacterial Dysbiosis in the Gut. Mucosal Immunol. 2017;10:18–26. doi: 10.1038/mi.2016.75. PubMed DOI PMC
Faber F., Thiennimitr P., Spiga L., Byndloss M.X., Litvak Y., Lawhon S., Andrews-Polymenis H.L., Winter S.E., Bäumler A.J. Respiration of Microbiota-Derived 1,2-Propanediol Drives Salmonella Expansion during Colitis. PLoS Pathog. 2017;13:e1006129. doi: 10.1371/journal.ppat.1006129. PubMed DOI PMC
Maier L., Vyas R., Cordova C.D., Lindsay H., Schmidt T.S.B., Brugiroux S., Periaswamy B., Bauer R., Sturm A., Schreiber F., et al. Microbiota-Derived Hydrogen Fuels Salmonella Typhimurium Invasion of the Gut Ecosystem. Cell Host Microbe. 2013;14:641–651. doi: 10.1016/j.chom.2013.11.002. PubMed DOI
Zhang S., Kingsley R.A., Santos R.L., Andrews-Polymenis H., Raffatellu M., Figueiredo J., Nunes J., Tsolis R.M., Adams L.G., Bäumler A.J. Molecular Pathogenesis of Salmonella enterica Serotype Typhimurium-Induced Diarrhea. Infect. Immun. 2003;71:1–12. doi: 10.1128/IAI.71.1.1-12.2003. PubMed DOI PMC
Campos J., Mourão J., Peixe L., Antunes P. Non-Typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens. 2019;8:19. doi: 10.3390/pathogens8010019. PubMed DOI PMC
Crump J.A., Sjölund-Karlsson M., Gordon M.A., Parry C.M. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 2015;28:901–937. doi: 10.1128/CMR.00002-15. PubMed DOI PMC
Wen S.C., Best E., Nourse C. Non-Typhoidal Salmonella Infections in Children: Review of Literature and Recommendations for Management. J. Paediatr. Child Health. 2017;53:936–941. doi: 10.1111/jpc.13585. PubMed DOI
Nair S., Farzan A., O’Sullivan T.L., Friendship R.M. Time Course of Salmonella Shedding and Antibody Response in Naturally Infected Pigs during Grower-Finisher Stage. Can. J. Vet. Res. 2018;82:139–145. PubMed PMC
Fedorka-Cray P.J., Gray J.T., Wray C. Salmonella in Domestic Animals. CABI International; Wallingford, UK: 2000. Salmonella Infections in Pigs; pp. 191–207.
Farzan A., Friendship R.M. A Clinical Field Trial to Evaluate the Efficacy of Vaccination in Controlling Salmonella Infection and the Association of Salmonella-Shedding and Weight Gain in Pigs. Can. J. Vet. Res. 2010;74:258–263. PubMed PMC
Naberhaus S.A., Krull A.C., Arruda B.L., Arruda P., Sahin O., Schwartz K.J., Burrough E.R., Magstadt D.R., Matias Ferreyra F., Gatto I.R.H., et al. Pathogenicity and Competitive Fitness of Salmonella enterica Serovar 4,[5],12:i:- Compared to Salmonella Typhimurium and Salmonella Derby in Swine. Front Vet Sci. 2019;6:502. doi: 10.3389/fvets.2019.00502. PubMed DOI PMC
Velasquez C.G., Macklin K.S., Kumar S., Bailey M., Ebner P.E., Oliver H.F., Martin-Gonzalez F.S., Singh M. Prevalence and Antimicrobial Resistance Patterns of Salmonella Isolated from Poultry Farms in Southeastern United States. Poult. Sci. 2018;97:2144–2152. doi: 10.3382/ps/pex449. PubMed DOI
Millet S., Maertens L. The European Ban on Antibiotic Growth Promoters in Animal Feed: From Challenges to Opportunities. Vet. J. 2011;187:143–144. doi: 10.1016/j.tvjl.2010.05.001. PubMed DOI
Castanon J.I.R. History of the Use of Antibiotic as Growth Promoters in European Poultry Feeds. Poult. Sci. 2007;86:2466–2471. doi: 10.3382/ps.2007-00249. PubMed DOI
Brugiroux S., Beutler M., Pfann C., Garzetti D., Ruscheweyh H.-J., Ring D., Diehl M., Herp S., Lötscher Y., Hussain S., et al. Genome-Guided Design of a Defined Mouse Microbiota That Confers Colonization Resistance against Salmonella enterica Serovar Typhimurium. Nat. Microbiol. 2016;2:16215. doi: 10.1038/nmicrobiol.2016.215. PubMed DOI
Stecher B. Establishing Causality in Salmonella-Microbiota-Host Interaction: The Use of Gnotobiotic Mouse Models and Synthetic Microbial Communities. Int. J. Med. Microbiol. 2021;311:151484. doi: 10.1016/j.ijmm.2021.151484. PubMed DOI
Lee H., Ko G. Antiviral Effect of Vitamin A on Norovirus Infection via Modulation of the Gut Microbiome. Sci. Rep. 2016;6:25835. doi: 10.1038/srep25835. PubMed DOI PMC
Shi L.H., Balakrishnan K., Thiagarajah K., Mohd Ismail N.I., Yin O.S. Beneficial Properties of Probiotics. Trop Life Sci. Res. 2016;27:73–90. doi: 10.21315/tlsr2016.27.2.6. PubMed DOI PMC
Hojsak I., Szajewska H., Canani R.B., Guarino A., Indrio F., Kolacek S., Orel R., Shamir R., Vandenplas Y., van Goudoever J.B., et al. Probiotics for the Prevention of Nosocomial Diarrhea in Children. J. Pediatr. Gastroenterol. Nutr. 2018;66:3–9. doi: 10.1097/MPG.0000000000001637. PubMed DOI
Guo Q., Goldenberg J.Z., Humphrey C., El Dib R., Johnston B.C. Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Cochrane Database Syst. Rev. 2019;4:CD004827. doi: 10.1002/14651858.CD004827.pub5. PubMed DOI PMC
Szajewska H., Guarino A., Hojsak I., Indrio F., Kolacek S., Shamir R., Vandenplas Y., Weizman Z. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Use of Probiotics for Management of Acute Gastroenteritis: A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. J. Pediatr. Gastroenterol. Nutr. 2014;58:531–539. doi: 10.1097/MPG.0000000000000320. PubMed DOI
Schmidt R.M., Pilmann Laursen R., Bruun S., Larnkjaer A., Mølgaard C., Michaelsen K.F., Høst A. Probiotics in Late Infancy Reduce the Incidence of Eczema: A Randomized Controlled Trial. Pediatr. Allergy Immunol. 2019;30:335–340. doi: 10.1111/pai.13018. PubMed DOI
Oak S.J., Jha R. The Effects of Probiotics in Lactose Intolerance: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2019;59:1675–1683. doi: 10.1080/10408398.2018.1425977. PubMed DOI
Roy Sarkar S., Mitra Mazumder P., Banerjee S. Probiotics Protect against Gut Dysbiosis Associated Decline in Learning and Memory. J. Neuroimmunol. 2020;348:577390. doi: 10.1016/j.jneuroim.2020.577390. PubMed DOI
Kligler B., Cohrssen A. Probiotics. Am. Fam. Physician. 2008;78:1073–1078. PubMed
Bhogoju S., Nahashon S. Recent Advances in Probiotic Application in Animal Health and Nutrition: A Review. Collect. FAO Agric. 2022;12:304. doi: 10.3390/agriculture12020304. DOI
Ishibashi N., Yamazaki S. Probiotics and Safety. Am. J. Clin. Nutr. 2001;73:465S–470S. doi: 10.1093/ajcn/73.2.465s. PubMed DOI
Kailasapathy K., Chin J. Survival and Therapeutic Potential of Probiotic Organisms with Reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Cell Biol. 2000;78:80–88. doi: 10.1046/j.1440-1711.2000.00886.x. PubMed DOI
Papadimitriou K., Zoumpopoulou G., Foligné B., Alexandraki V., Kazou M., Pot B., Tsakalidou E. Discovering Probiotic Microorganisms: In Vitro, in Vivo, Genetic and Omics Approaches. Front. Microbiol. 2015;6:58. doi: 10.3389/fmicb.2015.00058. PubMed DOI PMC
Taylor K., Gordon N., Langley G., Higgins W. Estimates for Worldwide Laboratory Animal Use in 2005. Altern. Lab. Anim. 2008;36:327–342. doi: 10.1177/026119290803600310. PubMed DOI
Eppig J.T., Blake J.A., Bult C.J., Kadin J.A., Richardson J.E. Mouse Genome Database Group The Mouse Genome Database (MGD): Facilitating Mouse as a Model for Human Biology and Disease. Nucleic Acids Res. 2015;43:D726–D736. doi: 10.1093/nar/gku967. PubMed DOI PMC
Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC
Xiao L., Feng Q., Liang S., Sonne S.B., Xia Z., Qiu X., Li X., Long H., Zhang J., Zhang D., et al. A Catalog of the Mouse Gut Metagenome. Nat. Biotechnol. 2015;33:1103–1108. doi: 10.1038/nbt.3353. PubMed DOI
Eberl C., Ring D., Münch P.C., Beutler M., Basic M., Slack E.C., Schwarzer M., Srutkova D., Lange A., Frick J.S., et al. Reproducible Colonization of Germ-Free Mice With the Oligo-Mouse-Microbiota in Different Animal Facilities. Front. Microbiol. 2019;10:2999. doi: 10.3389/fmicb.2019.02999. PubMed DOI PMC
Xiao L., Estellé J., Kiilerich P., Ramayo-Caldas Y., Xia Z., Feng Q., Liang S., Pedersen A.Ø., Kjeldsen N.J., Liu C., et al. A Reference Gene Catalogue of the Pig Gut Microbiome. Nat Microbiol. 2016;1:16161. doi: 10.1038/nmicrobiol.2016.161. PubMed DOI
Lunney J.K., Van Goor A., Walker K.E., Hailstock T., Franklin J., Dai C. Importance of the Pig as a Human Biomedical Model. Sci. Transl. Med. 2021;13:eabd5758. doi: 10.1126/scitranslmed.abd5758. PubMed DOI
Vlková E., Salmonová H., Bunešová V., Geigerová M., Rada V., Musilová Š. A New Medium Containing Mupirocin, Acetic Acid, and Norfloxacin for the Selective Cultivation of Bifidobacteria. Anaerobe. 2015;34:27–33. doi: 10.1016/j.anaerobe.2015.04.001. PubMed DOI
Modrackova N., Stovicek A., Burtscher J., Bolechova P., Killer J., Domig K.J., Neuzil-Bunesova V. The Bifidobacterial Distribution in the Microbiome of Captive Primates Reflects Parvorder and Feed Specialization of the Host. Sci. Rep. 2021;11:15273. doi: 10.1038/s41598-021-94824-y. PubMed DOI PMC
Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC
Kim B.J., Kim H.-Y., Yun Y.-J., Kim B.-J., Kook Y.-H. Differentiation of Bifidobacterium Species Using Partial RNA Polymerase {beta}-Subunit (RpoB) Gene Sequences. Int. J. Syst. Evol. Microbiol. 2010;60:2697–2704. doi: 10.1099/ijs.0.020339-0. PubMed DOI
Hall T.A. Nucleic Acids Symposium. Information Retrieval Ltd.; London, UK: 1999. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. 41 Edn 95–98.
Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
McClelland M., Sanderson K.E., Spieth J., Clifton S.W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M., Du F., et al. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium LT2. Nature. 2001;413:852–856. doi: 10.1038/35101614. PubMed DOI
Trebichavský I., Dlabac V., Reháková Z., Zahradnícková M., Splíchal I. Cellular Changes and Cytokine Expression in the Ilea of Gnotobiotic Piglets Resulting from Peroral Salmonella Typhimurium Challenge. Infect. Immun. 1997;65:5244–5249. doi: 10.1128/iai.65.12.5244-5249.1997. PubMed DOI PMC
Vlková E., Grmanová M., Rada V., Homutová I., Dubná S. Selection of Probiotic Bifidobacteria for Lambs. Czech J. Anim. Sci. 2009;54:552–565. doi: 10.17221/151/2009-CJAS. DOI
Del Re B., Sgorbati B., Miglioli M., Palenzona D. Adhesion, Autoaggregation and Hydrophobicity of 13 Strains of Bifidobacterium Longum. Lett. Appl. Microbiol. 2000;31:438–442. doi: 10.1046/j.1365-2672.2000.00845.x. PubMed DOI
Saarela M., Hallamaa K., Mattila-Sandholm T., Mättö J. The Effect of Lactose Derivatives Lactulose, Lactitol and Lactobionic Acid on the Functional and Technological Properties of Potentially Probiotic Lactobacillus Strains. Int. Dairy J. 2003;13:291–302. doi: 10.1016/S0958-6946(02)00158-9. DOI
Matuschek E., Brown D.F.J., Kahlmeter G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clin. Microbiol. Infect. 2014;20:O255–O266. doi: 10.1111/1469-0691.12373. PubMed DOI
Hollensteiner J., Wemheuer F., Harting R., Kolarzyk A.M., Diaz Valerio S.M., Poehlein A., Brzuszkiewicz E.B., Nesemann K., Braus-Stromeyer S.A., Braus G.H., et al. Bacillus Thuringiensis and Bacillus Weihenstephanensis Inhibit the Growth of Phytopathogenic Verticillium Species. Front. Microbiol. 2016;7:2171. doi: 10.3389/fmicb.2016.02171. PubMed DOI PMC
Kushner D.J. An Evaluation of the Egg-Yolk Reaction as a Test for Lecithinase Activity. J. Bacteriol. 1957;73:297–302. doi: 10.1128/jb.73.3.297-302.1957. PubMed DOI PMC
Krausova G., Hyrslova I., Hynstova I. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation. 2019;5:100. doi: 10.3390/fermentation5040100. DOI
Xu H., Lao L., Ji C., Lu Q., Guo Y., Pan D., Wu Z. Anti-Inflammation and Adhesion Enhancement Properties of the Multifunctional LPxTG-Motif Surface Protein Derived from the Lactobacillus Reuteri DSM 8533. Mol. Immunol. 2022;146:38–45. doi: 10.1016/j.molimm.2022.04.004. PubMed DOI
Sorbara M.T., Pamer E.G. Microbiome-Based Therapeutics. Nat. Rev. Microbiol. 2022;20:365–380. doi: 10.1038/s41579-021-00667-9. PubMed DOI
Splichalova A., Slavikova V., Splichalova Z., Splichal I. Preterm Life in Sterile Conditions: A Study on Preterm, Germ-Free Piglets. Front. Immunol. 2018;9:220. doi: 10.3389/fimmu.2018.00220. PubMed DOI PMC
Splichalova A., Trebichavsky I., Rada V., Vlkova E., Sonnenborn U., Splichal I. Interference of Bifidobacterium Choerinum or Escherichia Coli Nissle 1917 with Salmonella Typhimurium in Gnotobiotic Piglets Correlates with Cytokine Patterns in Blood and Intestine. Clin. Exp. Immunol. 2011;163:242–249. doi: 10.1111/j.1365-2249.2010.04283.x. PubMed DOI PMC
Splichalova A., Pechar R., Killer J., Splichalova Z., Bunesova V.N., Vlkova E., Salmonova H.S., Splichal I. Colonization of Germ-Free Piglets with Mucinolytic and Non-Mucinolytic Bifidobacterium Boum Strains Isolated from the Intestine of Wild Boar and Their Interference with Salmonella Typhimurium. Microorganisms. 2020;8:2002. doi: 10.3390/microorganisms8122002. PubMed DOI PMC
Splichal I., Donovan S.M., Jenistova V., Splichalova I., Salmonova H., Vlkova E., Neuzil Bunesova V., Sinkora M., Killer J., Skrivanova E., et al. High Mobility Group Box 1 and TLR4 Signaling Pathway in Gnotobiotic Piglets Colonized/Infected with L. Amylovorus, L. Mucosae, E. coli Nissle 1917 and S. typhimurium. Int. J. Mol. Sci. 2019;20:6294. doi: 10.3390/ijms20246294. PubMed DOI PMC
Splichalova A., Donovan S.M., Tlaskalova-Hogenova H., Stranak Z., Splichalova Z., Splichal I. Monoassociation of Preterm Germ-Free Piglets with Bifidobacterium Animalis Subsp. Lactis BB-12 and Its Impact on Infection with Salmonella Typhimurium. Biomedicines. 2021;9:183. doi: 10.3390/biomedicines9020183. PubMed DOI PMC
Splichalova A., Jenistova V., Splichalova Z., Splichal I. Colonization of Preterm Gnotobiotic Piglets with Probiotic Lactobacillus Rhamnosus GG and Its Interference with Salmonella Typhimurium. Clin. Exp. Immunol. 2019;195:381–394. doi: 10.1111/cei.13236. PubMed DOI PMC
Dominici L., Moretti M., Villarini M., Vannini S., Cenci G., Zampino C., Traina G. In Vivo Antigenotoxic Properties of a Commercial Probiotic Supplement Containing Bifidobacteria. Int. J. Probiotics Prebiotics. 2011;6:4.
Roselli M., Pieper R., Rogel-Gaillard C., de Vries H., Bailey M., Smidt H., Lauridsen C. Immunomodulating Effects of Probiotics for Microbiota Modulation, Gut Health and Disease Resistance in Pigs. Anim. Feed Sci. Technol. 2017;233:104–119. doi: 10.1016/j.anifeedsci.2017.07.011. DOI
Laycock G., Sait L., Inman C., Lewis M., Smidt H., van Diemen P., Jorgensen F., Stevens M., Bailey M. A Defined Intestinal Colonization Microbiota for Gnotobiotic Pigs. Vet. Immunol. Immunopathol. 2012;149:216–224. doi: 10.1016/j.vetimm.2012.07.004. PubMed DOI
McCracken V.J., Lorenz R.G. The Gastrointestinal Ecosystem: A Precarious Alliance among Epithelium, Immunity and Microbiota. Cell. Microbiol. 2001;3:1–11. doi: 10.1046/j.1462-5822.2001.00090.x. PubMed DOI
Zmora N., Zilberman-Schapira G., Suez J., Mor U., Dori-Bachash M., Bashiardes S., Kotler E., Zur M., Regev-Lehavi D., Brik R.B.-Z., et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell. 2018;174:1388–1405.e21. doi: 10.1016/j.cell.2018.08.041. PubMed DOI
Barba-Vidal E., Martín-Orúe S.M., Castillejos L. Practical Aspects of the Use of Probiotics in Pig Production: A Review. Livest. Sci. 2019;223:84–96. doi: 10.1016/j.livsci.2019.02.017. DOI
Simon O. Micro-Organisms as Feed Additives—Probiotics. Adv. Pork Prod. 2005;16:161–167.
Markowiak P., Śliżewska K. The Role of Probiotics, Prebiotics and Synbiotics in Animal Nutrition. Gut Pathog. 2018;10:21. doi: 10.1186/s13099-018-0250-0. PubMed DOI PMC
Pechar R., Killer J., Mekadim C., Geigerová M., Rada V. Classification of Culturable Bifidobacterial Population from Colonic Samples of Wild Pigs (Sus Scrofa) Based on Three Molecular Genetic Methods. Curr. Microbiol. 2017;74:1324–1331. doi: 10.1007/s00284-017-1320-0. PubMed DOI
Yang J., Qian K., Wang C., Wu Y. Roles of Probiotic Lactobacilli Inclusion in Helping Piglets Establish Healthy Intestinal Inter-Environment for Pathogen Defense. Probiotics Antimicrob. Proteins. 2018;10:243–250. doi: 10.1007/s12602-017-9273-y. PubMed DOI
Anadón A., Ares I., Martínez-Larrañaga M.R., Martínez M.A. Prebiotics and Probiotics in Feed and Animal Health. In: Gupta R.C., Srivastava A., Lall R., editors. Nutraceuticals in Veterinary Medicine. Springer International Publishing; Cham, Switzerland: 2019. pp. 261–285.
Wylensek D., Hitch T.C.A., Riedel T., Afrizal A., Kumar N., Wortmann E., Liu T., Devendran S., Lesker T.R., Hernández S.B., et al. A Collection of Bacterial Isolates from the Pig Intestine Reveals Functional and Taxonomic Diversity. Nat. Commun. 2020;11:6389. doi: 10.1038/s41467-020-19929-w. PubMed DOI PMC
Yamano T., Iino H., Takada M., Blum S., Rochat F., Fukushima Y. Improvement of the Human Intestinal Flora by Ingestion of the Probiotic Strain Lactobacillus Johnsonii La1. Br. J. Nutr. 2006;95:303–312. doi: 10.1079/BJN20051507. PubMed DOI
Tejero-Sariñena S., Barlow J., Costabile A., Gibson G.R., Rowland I. In Vitro Evaluation of the Antimicrobial Activity of a Range of Probiotics against Pathogens: Evidence for the Effects of Organic Acids. Anaerobe. 2012;18:530–538. doi: 10.1016/j.anaerobe.2012.08.004. PubMed DOI
Kanmani P., Satish Kumar R., Yuvaraj N., Paari K.A., Pattukumar V., Arul V. Probiotics and Its Functionally Valuable Products-a Review. Crit. Rev. Food Sci. Nutr. 2013;53:641–658. doi: 10.1080/10408398.2011.553752. PubMed DOI
Li Y., Xiang Q., Zhang Q., Huang Y., Su Z. Overview on the Recent Study of Antimicrobial Peptides: Origins, Functions, Relative Mechanisms and Application. Peptides. 2012;37:207–215. doi: 10.1016/j.peptides.2012.07.001. PubMed DOI
Simons A., Alhanout K., Duval R.E. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms. 2020;8:639. doi: 10.3390/microorganisms8050639. PubMed DOI PMC
Makras L., Triantafyllou V., Fayol-Messaoudi D., Adriany T., Zoumpopoulou G., Tsakalidou E., Servin A., De Vuyst L. Kinetic Analysis of the Antibacterial Activity of Probiotic Lactobacilli towards Salmonella enterica Serovar Typhimurium Reveals a Role for Lactic Acid and Other Inhibitory Compounds. Res. Microbiol. 2006;157:241–247. doi: 10.1016/j.resmic.2005.09.002. PubMed DOI
Shi S., Qi Z., Sheng T., Tu J., Shao Y., Qi K. Antagonistic Trait of Lactobacillus Reuteri S5 against Salmonella Enteritidis and Assessment of Its Potential Probiotic Characteristics. Microb. Pathog. 2019;137:103773. doi: 10.1016/j.micpath.2019.103773. PubMed DOI
Ozogul F., Yazgan H., Ozogul Y. Encyclopedia of Dairy Sciences. Academic Press; Cambridge, MA, USA: 2022. Lactic Acid Bacteria: Lactobacillus Acidophilus; pp. 187–197.
Thakur N., Rokana N., Panwar H. Probiotics, Selection Criteria, Safety and Role in Health And. J. Innov. Biol. Jan. 2016;3:259–270.
Monteagudo-Mera A., Rastall R.A., Gibson G.R., Charalampopoulos D., Chatzifragkou A. Adhesion Mechanisms Mediated by Probiotics and Prebiotics and Their Potential Impact on Human Health. Appl. Microbiol. Biotechnol. 2019;103:6463–6472. doi: 10.1007/s00253-019-09978-7. PubMed DOI PMC
MacKenzie D.A., Jeffers F., Parker M.L., Vibert-Vallet A., Bongaerts R.J., Roos S., Walter J., Juge N. Strain-Specific Diversity of Mucus-Binding Proteins in the Adhesion and Aggregation Properties of Lactobacillus Reuteri. Microbiology. 2010;156:3368–3378. doi: 10.1099/mic.0.043265-0. PubMed DOI
Feng Y., Qiao L., Liu R., Yao H., Gao C. Potential Probiotic Properties of Lactic Acid Bacteria Isolated from the Intestinal Mucosa of Healthy Piglets. Ann. Microbiol. 2017;67:239–253. doi: 10.1007/s13213-017-1254-6. DOI
Tulumoglu S., Yuksekdag Z.N., Beyatli Y., Simsek O., Cinar B., Yaşar E. Probiotic Properties of Lactobacilli Species Isolated from Children’s Feces. Anaerobe. 2013;24:36–42. doi: 10.1016/j.anaerobe.2013.09.006. PubMed DOI
Vlková E., Grmanová M., Killer J., Mrázek J., Kopecný J., Bunesová V., Rada V. Survival of Bifidobacteria Administered to Calves. Folia Microbiol. 2010;55:390–392. doi: 10.1007/s12223-010-0066-x. PubMed DOI
Mulaw G., Sisay Tessema T., Muleta D., Tesfaye A. In Vitro Evaluation of Probiotic Properties of Lactic Acid Bacteria Isolated from Some Traditionally Fermented Ethiopian Food Products. Int. J. Microbiol. 2019;2019:7179514. doi: 10.1155/2019/7179514. PubMed DOI PMC
FAO. WHO . Guidelines for the Evaluation of Probiotics in Food. World Health Organization; Geneva, Switzerland: Food And Agriculture Organization; Rome, Italy: 2002.
Carvalho A.S., Silva J., Ho P., Teixeira P., Malcata F.X., Gibbs P. Relevant Factors for the Preparation of Freeze-Dried Lactic Acid Bacteria. Int. Dairy J. 2004;14:835–847. doi: 10.1016/j.idairyj.2004.02.001. DOI
Geigerová M., Vlková E., Bunešová V., Rada V. Persistence of Bifidobacteria in the Intestines of Calves after Administration in Freeze-Dried Form or in Fermented Milk. Czech J. Anim. Sci. 2016;61:49–57. doi: 10.17221/8727-CJAS. DOI
Darnaud M., De Vadder F., Bogeat P., Boucinha L., Bulteau A.-L., Bunescu A., Couturier C., Delgado A., Dugua H., Elie C., et al. A Standardized Gnotobiotic Mouse Model Harboring a Minimal 15-Member Mouse Gut Microbiota Recapitulates SOPF/SPF Phenotypes. Nat. Commun. 2021;12:6686. doi: 10.1038/s41467-021-26963-9. PubMed DOI PMC
Defined Pig Microbiota Mixture as Promising Strategy against Salmonellosis in Gnotobiotic Piglets