A standardized gnotobiotic mouse model harboring a minimal 15-member mouse gut microbiota recapitulates SOPF/SPF phenotypes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
U2C DK119886
NIDDK NIH HHS - United States
PubMed
34795236
PubMed Central
PMC8602333
DOI
10.1038/s41467-021-26963-9
PII: 10.1038/s41467-021-26963-9
Knihovny.cz E-zdroje
- MeSH
- Bacteria klasifikace genetika MeSH
- druhová specificita MeSH
- feces mikrobiologie MeSH
- fenotyp MeSH
- gnotobiologické modely * MeSH
- metagenomika metody MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- organismy bez specifických patogenů * MeSH
- sekvenování celého genomu metody MeSH
- střevní mikroflóra genetika fyziologie MeSH
- tělesná hmotnost genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Mus musculus is the classic mammalian model for biomedical research. Despite global efforts to standardize breeding and experimental procedures, the undefined composition and interindividual diversity of the microbiota of laboratory mice remains a limitation. In an attempt to standardize the gut microbiome in preclinical mouse studies, here we report the development of a simplified mouse microbiota composed of 15 strains from 7 of the 20 most prevalent bacterial families representative of the fecal microbiota of C57BL/6J Specific (and Opportunistic) Pathogen-Free (SPF/SOPF) animals and the derivation of a standardized gnotobiotic mouse model called GM15. GM15 recapitulates extensively the functionalities found in the C57BL/6J SOPF microbiota metagenome, and GM15 animals are phenotypically similar to SOPF or SPF animals in two different facilities. They are also less sensitive to the deleterious effects of post-weaning malnutrition. In this work, we show that the GM15 model provides increased reproducibility and robustness of preclinical studies by limiting the confounding effect of fluctuation in microbiota composition, and offers opportunities for research focused on how the microbiota shapes host physiology in health and disease.
BIOASTER Institut de Recherche Technologique 40 avenue Tony Garnier 69007 Lyon France
German Center for Infection Research Partner Site Munich Germany
Zobrazit více v PubMed
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N. Engl J. Med. 2016;375:2369–2379. PubMed
Knight R, et al. The microbiome and human biology. Annu. Rev. Genomics Hum. Genet. 2017;18:65–86. PubMed
Bik EM. The hoops, hopes, and hypes of human microbiome research. Yale J. Biol. Med. 2016;89:363–373. PubMed PMC
Leulier F, et al. Integrative physiology: at the crossroads of nutrition, microbiota, animal physiology, and human health. Cell Metab. 2017;25:522–534. PubMed PMC
Nguyen TLA, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 2015;8:1–16. PubMed PMC
Mähler Convenor M, et al. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab. Anim. 2014;48:178–192. PubMed
Mamantopoulos M, et al. Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition. Immunity. 2017;47:339–348. PubMed
Ussar S, et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 2015;22:516–530. PubMed PMC
Franklin CL, Ericsson AC. Microbiota and reproducibility of rodent models. Lab. Anim. 2017;46:114–122. PubMed PMC
Mooser C, Gomez de Agüero M, Ganal-Vonarburg SC. Standardization in host-microbiota interaction studies: challenges, gnotobiology as a tool, and perspective. Curr. Opin. Microbiol. 2018;44:50–60. PubMed
Laukens D, Brinkman BM, Raes J, De Vos M, Vandenabeele P. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol. Rev. 2016;40:117–132. PubMed PMC
Stappenbeck TS, Virgin HW. Accounting for reciprocal host-microbiome interactions in experimental science. Nature. 2016;534:191–199. PubMed
Clavel T, Lagkouvardos I, Blaut M, Stecher B. The mouse gut microbiome revisited: from complex diversity to model ecosystems. Int. J. Med. Microbiol. 2016;306:316–327. PubMed
McCoy KD, Geuking MB, Ronchi F. Gut microbiome standardization in control and experimental mice. Curr. Protoc. Immunol. 2017;117:1–13. PubMed
Ley RE, et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA. 2005;102:11070–11075. PubMed PMC
Xiao L, et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 2015;33:1103–1108. PubMed
Lane-Petter W. Provision of pathogen-free animals. Proc. R. Soc. Med. 1962;55:253–256. PubMed
Macpherson AJ, McCoy KD. Standardised animal models of host microbial mutualism. Mucosal. Immunol. 2015;8:476–486. PubMed PMC
Lagkouvardos I, et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat. Microbiol. 2016;1:16131. PubMed
Clavel T, Gomes-Neto JC, Lagkouvardos I, Ramer-Tait AE. Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunol. Rev. 2017;279:8–22. PubMed PMC
Wymore Brand M, et al. The Altered Schaedler flora: continued applications of a defined murine microbial community. ILAR J. 2015;56:169–178. PubMed PMC
Brugiroux S, et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2016;2:16215. PubMed
Schaedler RW, Dubos R, Costello R. Association of germfree mice with bacteria isolated from normal mice. J. Exp. Med. 1965;122:77–83. PubMed PMC
Norin E, Midtvedt T. Intestinal microflora functions in laboratory mice claimed to harbor a “normal” intestinal microflora. Is the SPF concept running out of date? Anaerobe. 2010;16:311–313. PubMed
Uchimura Y, et al. Complete genome sequences of 12 species of stable defined moderately diverse mouse microbiota 2. Genome Announc. 2016;4:e00951–16. PubMed PMC
Garzetti D, et al. High-quality whole-genome sequences of the oligo-mouse-microbiota bacterial community. Genome Announc. 2017;5:e00758–17. PubMed PMC
Eberl C, et al. Reproducible colonization of germ-free mice with the oligo-mouse-microbiota in different animal facilities. Front. Microbiol. 2020;10:2999. PubMed PMC
Yilmaz B, et al. Long-term evolution and short-term adaptation of microbiota strains and sub-strains in mice. Cell Host Microbe. 2021;29:650–663. PubMed
Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 2016;26:1721–1729. PubMed PMC
O’Leary NA, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed
Elie C, et al. Draft genome sequences of 15 bacterial species constituting the stable defined intestinal microbiota of the GM15 gnotobiotic mouse model. Microbiol. Resour. Announc. 2020;9:e00686–20. PubMed PMC
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of action of probiotics. Adv. Nutr. 2019;10:S49–S66. PubMed PMC
Feldman-Salit A, et al. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria. J. Biol. Chem. 2013;288:21295–21306. PubMed PMC
Galperin, M. Y. Genome diversity of spore-forming Firmicutes. Microbiol. Spectr. 1, TBS-0015-2012 (2013). PubMed PMC
Browne HP, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543–546. PubMed PMC
Mukhopadhya I, et al. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. Environ. Microbiol. 2018;20:324–336. PubMed PMC
Pearson JP, Brownlee IA. The interaction of large bowel microflora with the colonic mucus barrier. Int. J. Inflamm. 2010;2010:321426. PubMed PMC
Macy JM, Ljungdahl LG, Gottschalk G. Pathway of succinate and propionate formation in Bacteroides fragilis. J. Bacteriol. 1978;134:84–91. PubMed PMC
Johnson JL, Moore WEC, Moore LVH. Bacteroides Caccae sp.nov., Bacteroides merdae sp.nov., and Bacteroides stercoris sp.nov. isolated from human feces. Int. J. Sys. Bacteriol. 1986;36:499–501.
Wannemuehler MJ, Overstreet AM, Ward DV, Phillips GJ. Draft genome sequences of the altered schaedler flora, a defined bacterial community from gnotobiotic mice. Genome Announc. 2014;2:e00287–14. PubMed PMC
Thompson GR, Trexler PC. Gastrointestinal structure and function in germ-free or gnotobiotic animals. Gut. 1971;12:230–235. PubMed PMC
Schwarzer M, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351:854–857. PubMed
Yan J, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl Acad. Sci. USA. 2016;113:E7554–E7563. PubMed PMC
Chung H, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–1593. PubMed PMC
Sjögren YM, et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin. Exp. Allergy. 2009;39:1842–1851. PubMed
Cahenzli J, Köller Y, Wyss M, Geuking MB, McCoy KD. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe. 2013;14:559–570. PubMed PMC
Koch MA, et al. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell. 2016;165:827–841. PubMed PMC
Durand A, et al. Profiling the lymphoid-resident T cell pool reveals modulation by age and microbiota. Nat. Commun. 2018;9:68. PubMed PMC
Bouskra D, et al. Lymphoid tissue genesis induced by commensals though NOD1 regulates intestinal homeostasis. Nature. 2008;456:507–510. PubMed
Kennedy EA, King KY, Baldridge MT. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 2018;9:1534. PubMed PMC
Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 2017;66:515–522. PubMed
Hong SW, et al. Food antigens drive spontaneous IgE elevation in the absence of commensal microbiota. Sci. Adv. 2019;5:eaaw1507. PubMed PMC
Nicholson JK, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–1267. PubMed
Cani PD, Knauf C. How gut microbes talk to organs: the role of endocrine and nervous routes. Mol. Metab. 2016;5:743–752. PubMed PMC
Mestdagh R, et al. Gut microbiota modulate the metabolism of brown adipose tissue in mice. J. Proteome Res. 2012;11:620–630. PubMed
Claus SP, et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol. Syst. Biol. 2008;4:219. PubMed PMC
Org E, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017;18:70. PubMed PMC
Mardinoglu A, et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol. Syst. Biol. 2015;11:834. PubMed PMC
Trent CM, Blaser MJ. Microbially produced acetate: a “missing link” in understanding obesity? Cell Metab. 2016;24:9–10. PubMed
He X, Slupsky CM. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism. J. Proteome Res. 2014;13:5281–5292. PubMed
Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. Metabolic methanol: molecular pathways and physiological roles. Physiol. Rev. 2015;95:603–644. PubMed
Max B, et al. Biotechnological production of citric acid. Braz. J. Microbiol. 2010;41:862–875. PubMed PMC
Kaplan SA, Cohen P. The somatomedin hypothesis 2007: 50 years later. J. Clin. Endocrinol. Metab. 2007;92:4529–4535. PubMed
Klover P, Hennighausen L. Postnatal body growth is dependent on the transcription factors signal transducers and activators of transcription 5a/b in muscle: a role for autocrine/paracrine insulin-like growth factor I. Endocrinology. 2007;148:1489–1497. PubMed
Luczynski P, et al. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol. 2016;19:pyw020. PubMed PMC
Blanton LV, Barratt MJ, Charbonneau MR, Ahmed T, Gordon JI. Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science. 2016;352:1533. PubMed
Gehrig JL, et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science. 2019;365:eaau4732. PubMed PMC
Nishimori JH, et al. Microbial amyloids induce interleukin 17A (IL-17A) and IL-22 responses via Toll-like receptor 2 activation in the intestinal mucosa. Infect. Immun. 2012;80:4398–4408. PubMed PMC
https://www.biomerieux-industry.com/fr/products/vitek-ms-rapid-identification-microorganisms-mass-spectrometry.
Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics. 2018;34:2371–2375. PubMed
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007;73:5261–5267. PubMed PMC
Kim OS, et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012;62:716–721. PubMed
Hitch TCA, et al. Automated analysis of genomic sequences facilitates highthroughput and comprehensive description of bacteria. ISME Commun. 2021;1:16. PubMed PMC
Andrews, S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics. 2015;31:587–589. PubMed
Darling AE, Tritt A, Eisen JA, Facciotti MT. Mauve assembly metrics. Bioinformatics. 2011;27:2756–2757. PubMed PMC
Chen S, et al. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinform. 2017;18:80. PubMed PMC
Hyatt D, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119. PubMed PMC
Finn RD, et al. HMMER web server: 2015 update. Nucleic Acids Res. 2015;43:W30–W38. PubMed PMC
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462. PubMed PMC
Delcher, A. L., Salzberg, S. L. & Phillippy, A. M. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinform. Chapter 10, Unit 10.3 (2003). PubMed
Ernst C, Rahmann S. PanCake: a data structure for pangenomes. Ger. Conf. Bioinform. 2013;2013:35–45.
Packey CD, et al. Molecular detection of bacterial contamination in gnotobiotic rodent units. Gut Microbes. 2013;4:361–370. PubMed PMC
Spector AA. Fatty acid binding to plasma albumin. J. Lipid Res. 1975;16:165–179. PubMed
Nagana Gowda GA, Raftery D. Quantitating metabolites in protein precipitated serum using NMR spectroscopy. Anal. Chem. 2014;86:5433–5440. PubMed PMC
Tiziani S, et al. Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Anal. Biochem. 2008;377:16–23. PubMed
Tynkkynen, T. 1H NMR analysis of serum lipids. Publications of the University of Eastern Finland. Dissertations in Forestry and Natural Sciences, no. 76, URN:ISBN:978-952-61-0839-1 (2012).
Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom. Intel. Lab. 2001;58:109–130.
Barker M, Rayens W. Partial least squares for discrimination. J. Chemom. 2003;17:166–173.
Dray S, Dufour AB. The ade4 Package: implementing the duality diagram for ecologists. J. Stat. Softw. 2007;22:1–20.