Monoassociation of Preterm Germ-Free Piglets with Bifidobacterium animalis Subsp. lactis BB-12 and Its Impact on Infection with Salmonella Typhimurium
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
13-14736S
Grantová Agentura České Republiky
RVO 61388971
Institutional Research Concept of the Institute of Microbiology of the Czech Academy of Sciences
NV 17-31403A
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
33670419
PubMed Central
PMC7917597
DOI
10.3390/biomedicines9020183
PII: biomedicines9020183
Knihovny.cz E-zdroje
- Klíčová slova
- Bifidobacterium animalis subsp. lactis BB-12, Salmonella Typhimurium, immunocompromised, inflammatory cytokines, intestinal barrier, preterm host,
- Publikační typ
- časopisecké články MeSH
Preterm germ-free piglets were monoassociated with probiotic Bifidobacterium animalis subsp. lactis BB-12 (BB12) to verify its safety and to investigate possible protection against subsequent infection with Salmonella Typhimurium strain LT2 (LT2). Clinical signs of salmonellosis, bacterial colonization in the intestine, bacterial translocation to mesenteric lymph nodes (MLN), blood, liver, spleen, and lungs, histopathological changes in the ileum, claudin-1 and occludin mRNA expression in the ileum and colon, intestinal and plasma concentrations of IL-8, TNF-α, and IL-10 were evaluated. Both BB12 and LT2 colonized the intestine of the monoassociated piglets. BB12 did not translocate in the BB12-monoassociated piglets. BB12 was detected in some cases in the MLN of piglets, consequently infected with LT2, but reduced LT2 counts in the ileum and liver of these piglets. LT2 damaged the luminal structure of the ileum, but a previous association with BB12 mildly alleviated these changes. LT2 infection upregulated claudin-1 mRNA in the ileum and colon and downregulated occludin mRNA in the colon. Infection with LT2 increased levels of IL-8, TNF-α, and IL-10 in the intestine and plasma, and BB12 mildly downregulated them compared to LT2 alone. Despite reductions in bacterial translocation and inflammatory cytokines, clinical signs of LT2 infection were not significantly affected by the probiotic BB12. Thus, we hypothesize that multistrain bacterial colonization of preterm gnotobiotic piglets may be needed to enhance the protective effect against the infection with S. Typhimurium LT2.
Department of Food Science and Human Nutrition University of Illinois Urbana IL 61801 USA
Department of Neonatology Institute for the Care of Mother and Child 147 00 Prague Czech Republic
Zobrazit více v PubMed
Donovan S.M. Evolution of the gut microbiome in infancy within an ecological context. Curr. Opin. Clin. Nutr. Metab. Care. 2020;23:223–227. doi: 10.1097/MCO.0000000000000650. PubMed DOI PMC
Rutayisire E., Huang K., Liu Y., Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterol. 2016;16:86. doi: 10.1186/s12876-016-0498-0. PubMed DOI PMC
Davis E.C., Dinsmoor A.M., Wang M., Donovan S.M. Microbiome composition in pediatric populations from birth to adolescence: Impact of diet and prebiotic and probiotic interventions. Dig. Dis. Sci. 2020;65:706–722. doi: 10.1007/s10620-020-06092-x. PubMed DOI PMC
Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Mahony J., Belzer C., Delgado P.S., Arboleya M.S., Mancabelli L., et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 2017;81 doi: 10.1128/MMBR.00036-17. PubMed DOI PMC
Nagpal R., Tsuji H., Takahashi T., Nomoto K., Kawashima K., Nagata S., Yamashiro Y. Gut dysbiosis following C-section instigates higher colonisation of toxigenic Clostridium perfringens in infants. Benef. Microbes. 2017;8:353–365. doi: 10.3920/BM2016.0216. PubMed DOI
Osuchowski M.F., Ayala A., Bahrami S., Bauer M., Boros M., Cavaillon J.M., Chaudry I.H., Coopersmith C.M., Deutschman C., Drechsler S., et al. Minimum quality threshold in pre-clinical sepsis studies (MQTiPSS): An international expert consensus initiative for improvement of animal modeling in sepsis. Infection. 2018;46:687–691. doi: 10.1007/s15010-018-1183-8. PubMed DOI PMC
Tlaskalova-Hogenova H., Stepankova R., Kozakova H., Hudcovic T., Vannucci L., Tuckova L., Rossmann P., Hrncir T., Kverka M., Zakostelska Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC
Burrin D., Sangild P.T., Stoll B., Thymann T., Buddington R., Marini J., Olutoye O., Shulman R.J. Translational advances in pediatric Nutrition and gastroenterology: New insights from pig models. Annu. Rev. Anim. Biosci. 2020;8:321–354. doi: 10.1146/annurev-animal-020518-115142. PubMed DOI
Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. The pig: A model for human infectious diseases. Trends Microbiol. 2012;20:50–57. doi: 10.1016/j.tim.2011.11.002. PubMed DOI PMC
Waterhouse A., Leslie D.C., Bolgen D.E., Lightbown S., Dimitrakakis N., Cartwright M.J., Seiler B., Lightbown K., Smith K., Lombardo P., et al. Modified clinical monitoring assesment criteria for multi-organ failure during bacteremia and sepsis progression in a pig model. Advan Crit. Care Med. 2018;1:002.
Xiao L., Estelle J., Kiilerich P., Ramayo-Caldas Y., Xia Z., Feng Q., Liang S., Pedersen A.O., Kjeldsen N.J., Liu C., et al. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 2016;1:16161. doi: 10.1038/nmicrobiol.2016.161. PubMed DOI
Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC
Xiao L., Feng Q., Liang S., Sonne S.B., Xia Z., Qiu X., Li X., Long H., Zhang J., Zhang D., et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 2015;33:1103–1108. doi: 10.1038/nbt.3353. PubMed DOI
Pang X., Hua X., Yang Q., Ding D., Che C., Cui L., Jia W., Bucheli P., Zhao L. Inter-species transplantation of gut microbiota from human to pigs. ISME J. 2007;1:156–162. doi: 10.1038/ismej.2007.23. PubMed DOI
Wang M., Donovan S.M. Human microbiota-associated swine: Current progress and future opportunities. ILAR J. 2015;56:63–73. doi: 10.1093/ilar/ilv006. PubMed DOI PMC
Fischer D.D., Kandasamy S., Paim F.C., Langel S.N., Alhamo M.A., Shao L., Chepngeno J., Miyazaki A., Huang H.C., Kumar A., et al. Protein malnutrition alters tryptophan and angiotensin-converting enzyme 2 homeostasis and adaptive immune responses in human rotavirus-infected gnotobiotic pigs with human infant fecal microbiota transplant. Clin. Vaccine Immunol. 2017;24 doi: 10.1128/CVI.00172-17. PubMed DOI PMC
Kverka M., Tlaskalova-Hogenova H. Intestinal Microbiota: Facts and fiction. Dig. Dis. 2017;35:139–147. doi: 10.1159/000449095. PubMed DOI
Schroeder B.O., Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016;22:1079–1089. doi: 10.1038/nm.4185. PubMed DOI
Roberts R.M., Green J.A., Schulz L.C. The evolution of the placenta. Reproduction. 2016;152:R179–R189. doi: 10.1530/REP-16-0325. PubMed DOI PMC
Salmon H., Berri M., Gerdts V., Meurens F. Humoral and cellular factors of maternal immunity in swine. Dev. Comp. Immunol. 2009;33:384–393. doi: 10.1016/j.dci.2008.07.007. PubMed DOI
Splichalova A., Slavikova V., Splichalova Z., Splichal I. Preterm life in sterile conditions: A study on preterm, germ-free piglets. Front. Immunol. 2018;9:220. doi: 10.3389/fimmu.2018.00220. PubMed DOI PMC
Trebichavsky I., Rada V., Splichalova A., Splichal I. Cross-talk of human gut with bifidobacteria. Nutr. Rev. 2009;67:77–82. doi: 10.1111/j.1753-4887.2008.00141.x. PubMed DOI
Turroni F., Peano C., Pass D.A., Foroni E., Severgnini M., Claesson M.J., Kerr C., Hourihane J., Murray D., Fuligni F., et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE. 2012;7:e36957. doi: 10.1371/journal.pone.0036957. PubMed DOI PMC
Fushinobu S. Unique sugar metabolic pathways of bifidobacteria. Biosci. Biotechnol. Biochem. 2010;74:2374–2384. doi: 10.1271/bbb.100494. PubMed DOI
Turroni F., Milani C., Duranti S., Ferrario C., Lugli G.A., Mancabelli L., van S.D., Ventura M. Bifidobacteria and the infant gut: An example of co-evolution and natural selection. Cell. Mol. Life Sci. 2018;75:103–118. doi: 10.1007/s00018-017-2672-0. PubMed DOI PMC
Bottacini F., van S.D., Ventura M. Omics of bifidobacteria: Research and insights into their health-promoting activities. Biochem. J. 2017;474:4137–4152. doi: 10.1042/BCJ20160756. PubMed DOI
Abdulkadir B., Nelson A., Skeath T., Marrs E.C., Perry J.D., Cummings S.P., Embleton N.D., Berrington J.E., Stewart C.J. Routine use of probiotics in preterm infants: Longitudinal impact on the microbiome and metabolome. Neonatology. 2016;109:239–247. doi: 10.1159/000442936. PubMed DOI
Bertelli C., Pillonel T., Torregrossa A., Prod’hom G., Fischer C.J., Greub G., Giannoni E. Bifidobacterium longum bacteremia in preterm infants receiving probiotics. Clin. Infect. Dis. 2015;60:924–927. doi: 10.1093/cid/ciu946. PubMed DOI
Zbinden A., Zbinden R., Berger C., Arlettaz R. Case series of Bifidobacterium longum bacteremia in three preterm infants on probiotic therapy. Neonatology. 2015;107:56–59. doi: 10.1159/000367985. PubMed DOI
Ducarmon Q.R., Zwittink R.D., Hornung B.V.H., van S.W., Young V.B., Kuijper E.J. Gut icrobiota and colonization resistance against bacterial enteric infection. Microbiol. Mol. Biol. Rev. 2019;83 doi: 10.1128/MMBR.00007-19. PubMed DOI PMC
Hurley D., McCusker M.P., Fanning S., Martins M. Salmonella-host interactions—modulation of the host innate immune system. Front. Immunol. 2014;5:481. doi: 10.3389/fimmu.2014.00481. PubMed DOI PMC
Zhang S., Kingsley R.A., Santos R.L., Andrews-Polymenis H., Raffatellu M., Figueiredo J., Nunes J., Tsolis R.M., Adams L.G., Baumler A.J. Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect. Immun. 2003;71:1–12. doi: 10.1128/IAI.71.1.1-12.2003. PubMed DOI PMC
Kaiser P., Hardt W.D. Salmonella typhimurium diarrhea: Switching the mucosal epithelium from homeostasis to defense. Curr. Opin. Immunol. 2011;23:456–463. doi: 10.1016/j.coi.2011.06.004. PubMed DOI
Campos J., Mourao J., Peixe L., Antunes P. Non-typhoidal Salmonella in the pig production chain: A comprehensive analysis of Its impact on human health. Pathogens. 2019;8:19. doi: 10.3390/pathogens8010019. PubMed DOI PMC
Barthel M., Hapfelmeier S., Quintanilla-Martinez L., Kremer M., Rohde M., Hogardt M., Pfeffer K., Russmann H., Hardt W.D. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 2003;71:2839–2858. doi: 10.1128/IAI.71.5.2839-2858.2003. PubMed DOI PMC
Wen S.C., Best E., Nourse C. Non-typhoidal Salmonella infections in children: Review of literature and recommendations for management. J. Paediatr. Child. Health. 2017;53:936–941. doi: 10.1111/jpc.13585. PubMed DOI
Czaplewski L., Bax R., Clokie M., Dawson M., Fairhead H., Fischetti V.A., Foster S., Gilmore B.F., Hancock R.E., Harper D., et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect. Dis. 2016;16:239–251. doi: 10.1016/S1473-3099(15)00466-1. PubMed DOI
Jackson N., Czaplewski L., Piddock L.J.V. Discovery and development of new antibacterial drugs: Learning from experience? J. Antimicrob. Chemother. 2018;73:1452–1459. doi: 10.1093/jac/dky019. PubMed DOI
Stavropoulou E., Bezirtzoglou E. Probiotics in medicine: A long debate. Front. Immunol. 2020;11:2192. doi: 10.3389/fimmu.2020.02192. PubMed DOI PMC
Splichalova A., Pechar R., Killer J., Splichalova Z., Neuzil Bunesova V., Vlkova E., Subrtova Salmonova H., Splichal I. Colonization of germ-free piglets with mucinolytic and non-mucinolytic Bifidobacterium boum strains isolated from the intestine of wild boar and their interference with Salmonella Typhimurium. Microorganisms. 2020;8:2002. doi: 10.3390/microorganisms8122002. PubMed DOI PMC
Splichalova A., Jenistova V., Splichalova Z., Splichal I. Colonization of preterm gnotobiotic piglets with probiotic Lactobacillus rhamnosus GG and its interference with Salmonella Typhimurium. Clin. Exp. Immunol. 2019;195:381–394. doi: 10.1111/cei.13236. PubMed DOI PMC
Splichal I., Donovan S.M., Splichalova Z., Neuzil Bunesova V., Vlkova E., Jenistova V., Killer J., Svejstil R., Skrivanova E., Splichalova A. Colonization of germ-free piglets with commensal Lactobacillus amylovorus, Lactobacillus mucosae, and probiotic E. coli Nissle 1917 and their interference with Salmonella Typhimurium. Microorganisms. 2019;7:273. doi: 10.3390/microorganisms7080273. PubMed DOI PMC
Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI
Fanaroff A.A., Stoll B.J., Wright L.L., Carlo W.A., Ehrenkranz R.A., Stark A.R., Bauer C.R., Donovan E.F., Korones S.B., Laptook A.R., et al. Trends in neonatal morbidity and mortality for very low birthweight infants. Am. J. Obstet. Gynecol. 2007;196:147–148. doi: 10.1016/j.ajog.2006.09.014. PubMed DOI
Stoll B.J., Hansen N.I., Bell E.F., Walsh M.C., Carlo W.A., Shankaran S., Laptook A.R., Sanchez P.J., Van Meurs K.P., Wyckoff M., et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA. 2015;314:1039–1051. doi: 10.1001/jama.2015.10244. PubMed DOI PMC
Sangild P.T., Thymann T., Schmidt M., Stoll B., Burrin D.G., Buddington R.K. Invited review: The preterm pig as a model in pediatric gastroenterology. J. Anim. Sci. 2013;91:4713–4729. doi: 10.2527/jas.2013-6359. PubMed DOI PMC
Bunesova V., Vlkova E., Rada V., Killer J., Musilova S. Bifidobacteria from the gastrointestinal tract of animals: Differences and similarities. Benef. Microbes. 2014;5:377–388. doi: 10.3920/BM2013.0081. PubMed DOI
Nagpal R., Kurakawa T., Tsuji H., Takahashi T., Kawashima K., Nagata S., Nomoto K., Yamashiro Y. Evolution of gut Bifidobacterium population in healthy Japanese infants over the first three years of life: A quantitative assessment. Sci. Rep. 2017;7:10097. doi: 10.1038/s41598-017-10711-5. PubMed DOI PMC
Lamendella R., Santo Domingo J.W., Kelty C., Oerther D.B. Bifidobacteria in feces and environmental waters. Appl. Environ. Microbiol. 2008;74:575–584. doi: 10.1128/AEM.01221-07. PubMed DOI PMC
Killer J., Mrazek J., Bunesova V., Havlik J., Koppova I., Benada O., Rada V., Kopecny J., Vlkova E. Pseudoscardovia suis gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of wild pigs (Sus scrofa) Syst. Appl. Microbiol. 2013;36:11–16. doi: 10.1016/j.syapm.2012.09.001. PubMed DOI
Vlasova A.N., Chattha K.S., Kandasamy S., Liu Z., Esseili M., Shao L., Rajashekara G., Saif L.J. Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. PLoS ONE. 2013;8:e76962. doi: 10.1371/journal.pone.0076962. PubMed DOI PMC
Splichalova A., Trebichavsky I., Rada V., Vlkova E., Sonnenborn U., Splichal I. Interference of Bifidobacterium choerinum or Escherichia coli Nissle 1917 with Salmonella Typhimurium in gnotobiotic piglets correlates with cytokine patterns in blood and intestine. Clin. Exp. Immunol. 2011;163:242–249. doi: 10.1111/j.1365-2249.2010.04283.x. PubMed DOI PMC
van den Akker C.H.P., van Goudoever J.B., Shamir R., Domellof M., Embleton N.D., Hojsak I., Lapillonne A., Mihatsch W.A., Berni C.R., Bronsky J., et al. Probiotics and preterm infants: A position paper by the European society for paediatric gastroenterology hepatology and nutrition committee on nutrition and the European society for paediatric gastroenterology hepatology and nutrition working group for probiotics and prebiotics. J. Pediatr. Gastroenterol. Nutr. 2020;70:664–680. doi: 10.1097/MPG.0000000000002655. PubMed DOI
van den Akker C.H.P., van Goudoever J.B., Szajewska H., Embleton N.D., Hojsak I., Reid D., Shamir R. Probiotics for preterm infants: A strain-specific systematic review and network meta-analysis. J. Pediatr. Gastroenterol. Nutr. 2018;67:103–122. doi: 10.1097/MPG.0000000000001897. PubMed DOI
Bunesova V., Killer J., Javurkova B., Vlkova E., Tejnecky V., Musilova S., Rada V. Diversity of the subspecies Bifidobacterium animalis subsp. lactis. Anaerobe. 2017;44:40–47. doi: 10.1016/j.anaerobe.2017.01.006. PubMed DOI
Dronkers T.M.G., Ouwehand A.C., Rijkers G.T. Global analysis of clinical trials with probiotics. Heliyon. 2020;6:e04467. doi: 10.1016/j.heliyon.2020.e04467. PubMed DOI PMC
Trebichavsky I., Splichal I., Rada V., Splichalova A. Modulation of natural immunity in the gut by Escherichia coli strain Nissle 1917. Nutr. Rev. 2010;68:459–464. doi: 10.1111/j.1753-4887.2010.00305.x. PubMed DOI
Clarke R.C., Gyles C.L. Virulence of wild and mutant strains of Salmonella typhimurium in ligated intestinal segments of calves, pigs, and rabbits. Am. J. Vet. Res. 1987;48:504–510. PubMed
Splichal I., Rychlik I., Splichalova I., Karasova D., Splichalova A. Toll-Like receptor 4 signaling in the ileum and colon of gnotobiotic piglets infected with Salmonella Typhimurium or its isogenic Δrfa mutants. Toxins. 2020;12:545. doi: 10.3390/toxins12090545. PubMed DOI PMC
Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J.M., Topping D.L., Suzuki T., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469:543–547. doi: 10.1038/nature09646. PubMed DOI
Behnsen J., Perez-Lopez A., Nuccio S.P., Raffatellu M. Exploiting host immunity: The Salmonella paradigm. Trends Immunol. 2015;36:112–120. doi: 10.1016/j.it.2014.12.003. PubMed DOI PMC
Arguello H., Estelle J., Zaldivar-Lopez S., Jimenez-Marin A., Carvajal A., Lopez-Bascon M.A., Crispie F., O’Sullivan O., Cotter P.D., Priego-Capote F., et al. Early Salmonella Typhimurium infection in pigs disrupts microbiome composition and functionality principally at the ileum mucosa. Sci. Rep. 2018;8:7788. doi: 10.1038/s41598-018-26083-3. PubMed DOI PMC
Nagpal R., Yadav H. Bacterial translocation from the gut to the distant organs: An overview. Ann. Nutr. Metab. 2017;71(Suppl. 1):11–16. doi: 10.1159/000479918. PubMed DOI
Goldstein G.P., Sylvester K.G. Biomarker discovery and utility in necrotizing enterocolitis. Clin. Perinatol. 2019;46:1–17. doi: 10.1016/j.clp.2018.10.001. PubMed DOI
Zhang K., Griffiths G., Repnik U., Hornef M. Seeing is understanding: Salmonella’s way to penetrate the intestinal epithelium. Int. J. Med. Microbiol. 2018;308:97–106. doi: 10.1016/j.ijmm.2017.09.011. PubMed DOI
Santos R.L., Tsolis R.M., Baumler A.J., Adams L.G. Pathogenesis of Salmonella-induced enteritis. Braz. J. Med. Biol. Res. 2003;36:3–12. doi: 10.1590/S0100-879X2003000100002. PubMed DOI
Pammi M., Cope J., Tarr P.I., Warner B.B., Morrow A.L., Mai V., Gregory K.E., Kroll J.S., McMurtry V., Ferris M.J., et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: A systematic review and meta-analysis. Microbiome. 2017;5:31. doi: 10.1186/s40168-017-0248-8. PubMed DOI PMC
Dilli D., Aydin B., Fettah N.D., Ozyazici E., Beken S., Zenciroglu A., Okumus N., Ozyurt B.M., Ipek M.S., Akdag A., et al. The propre-save study: Effects of probiotics and prebiotics alone or combined on necrotizing enterocolitis in very low birth weight infants. J. Pediatr. 2015;166:545–551. doi: 10.1016/j.jpeds.2014.12.004. PubMed DOI
LaRock D.L., Chaudhary A., Miller S.I. Salmonellae interactions with host processes. Nat. Rev. Microbiol. 2015;13:191–205. doi: 10.1038/nrmicro3420. PubMed DOI PMC
Perez-Lopez A., Behnsen J., Nuccio S.P., Raffatellu M. Mucosal immunity to pathogenic intestinal bacteria. Nat. Rev. Immunol. 2016;16:135–148. doi: 10.1038/nri.2015.17. PubMed DOI
Splichalova A., Splichalova Z., Karasova D., Rychlik I., Trevisi P., Sinkora M., Splichal I. Impact of the Lipopolysaccharide chemotype of Salmonella enterica serovar Typhimurium on virulence in gnotobiotic piglets. Toxins. 2019;11:534. doi: 10.3390/toxins11090534. PubMed DOI PMC
Kohler H., Sakaguchi T., Hurley B.P., Kase B.A., Reinecker H.C., McCormick B.A. Salmonella enterica serovar Typhimurium regulates intercellular junction proteins and facilitates transepithelial neutrophil and bacterial passage. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;293:G178–G187. doi: 10.1152/ajpgi.00535.2006. PubMed DOI
Foster N., Lovell M.A., Marston K.L., Hulme S.D., Frost A.J., Bland P., Barrow P.A. Rapid protection of gnotobiotic pigs against experimental salmonellosis following induction of polymorphonuclear leukocytes by avirulent Salmonella enterica. Infect. Immun. 2003;71:2182–2191. doi: 10.1128/IAI.71.4.2182-2191.2003. PubMed DOI PMC
Splichal I., Trebichavsky I., Splichalova A., Barrow P.A. Protection of gnotobiotic pigs against Salmonella enterica serotype Typhimurium by rough mutant of the same serotype is accompanied by the change of local and systemic cytokine response. Vet. Immunol. Immunopathol. 2005;103:155–161. doi: 10.1016/j.vetimm.2004.09.001. PubMed DOI
Viswanathan V.K., Hodges K., Hecht G. Enteric infection meets intestinal function: How bacterial pathogens cause diarrhoea. Nat. Rev. Microbiol. 2009;7:110–119. doi: 10.1038/nrmicro2053. PubMed DOI PMC
Gunzel D., Yu A.S. Claudins and the modulation of tight junction permeability. Physiol. Rev. 2013;93:525–569. doi: 10.1152/physrev.00019.2012. PubMed DOI PMC
Liu X., Xia B., He T., Li D., Su J.H., Guo L., Wang J.F., Zhu Y.H. Oral administration of a select mixture of Lactobacillus and Bacillus alleviates inflammation and maintains mucosal barrier integrity in the ileum of pigs challenged with Salmonella Infantis. Microorganisms. 2019;7:135. doi: 10.3390/microorganisms7050135. PubMed DOI PMC
Al-Sadi R., Khatib K., Guo S., Ye D., Youssef M., Ma T. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;300:G1054–G1064. doi: 10.1152/ajpgi.00055.2011. PubMed DOI PMC
Edelblum K.L., Shen L., Weber C.R., Marchiando A.M., Clay B.S., Wang Y., Prinz I., Malissen B., Sperling A.I., Turner J.R. Dynamic migration of gammadelta intraepithelial lymphocytes requires occludin. Proc. Natl. Acad. Sci. USA. 2012;109:7097–7102. doi: 10.1073/pnas.1112519109. PubMed DOI PMC
Dalton J.E., Cruickshank S.M., Egan C.E., Mears R., Newton D.J., Andrew E.M., Lawrence B., Howell G., Else K.J., Gubbels M.J., et al. Intraepithelial gammadelta+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology. 2006;131:818–829. doi: 10.1053/j.gastro.2006.06.003. PubMed DOI
Ziesmann M.T., Marshall J.C. Multiple organ dysfunction: The defining syndrome of sepsis. Surg. Infect. 2018;19:184–190. doi: 10.1089/sur.2017.298. PubMed DOI
Delanghe J.R., Speeckaert M.M. Translational research and biomarkers in neonatal sepsis. Clin. Chim. Acta. 2015;451:46–64. doi: 10.1016/j.cca.2015.01.031. PubMed DOI
Collins A., Weitkamp J.H., Wynn J.L. Why are preterm newborns at increased risk of infection? Arch. Dis. Child. Fetal Neonatal Ed. 2018;103:F391–F394. doi: 10.1136/archdischild-2017-313595. PubMed DOI PMC
Sampah M.E.S., Hackam D.J. Dysregulated mucosal immunity and associated pathogeneses in preterm neonates. Front. Immunol. 2020;11:899. doi: 10.3389/fimmu.2020.00899. PubMed DOI PMC
Baggiolini M., Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992;307:97–101. doi: 10.1016/0014-5793(92)80909-Z. PubMed DOI
Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev. 2003;14:185–191. doi: 10.1016/S1359-6101(03)00022-4. PubMed DOI
Saraiva M., Vieira P., O’Garra A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020:217. doi: 10.1084/jem.20190418. PubMed DOI PMC
Splichal I., Splichalova A. Experimental enteric bacterial infections in pigs. J. Infect. Dis. 2018;218:504–505. doi: 10.1093/infdis/jiy185. PubMed DOI
Hibbert J.E., Currie A., Strunk T. Sepsis-induced immunosuppression in neonates. Front Pediatr. 2018;6:357. doi: 10.3389/fped.2018.00357. PubMed DOI PMC
Chaudhry H., Zhou J., Zhong Y., Ali M.M., McGuire F., Nagarkatti P.S., Nagarkatti M. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27:669–684. PubMed PMC
Gogos C.A., Drosou E., Bassaris H.P., Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: A marker for prognosis and future therapeutic options. J. Infect. Dis. 2000;181:176–180. doi: 10.1086/315214. PubMed DOI
Splichalova A., Splichal I. Local and systemic occurrences of HMGB1 in gnotobiotic piglets infected with E. coli O55 are related to bacterial translocation and inflammatory cytokines. Cytokine. 2012;60:597–600. doi: 10.1016/j.cyto.2012.07.026. PubMed DOI