Toll-Like Receptor 4 Signaling in the Ileum and Colon of Gnotobiotic Piglets Infected with Salmonella Typhimurium or Its Isogenic ∆rfa Mutants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
COST LD15090
Ministerstvo Školství, Mládeže a Tělovýchovy - International
Institutional Research Concept RVO 61388971
Mikrobiologický ústav AV ČR - International
CZ.02.1.01/0.0/0.0/16_025/0007404
Ministerstvo Školství, Mládeže a Tělovýchovy - International
PubMed
32842482
PubMed Central
PMC7551901
DOI
10.3390/toxins12090545
PII: toxins12090545
Knihovny.cz E-zdroje
- Klíčová slova
- Salmonella Typhimurium, chemotype, endotoxin, germ-free, gnotobiotic, lipopolysaccharide, piglet, toll-like receptor 4, ∆rfa mutant,
- MeSH
- gnotobiologické modely fyziologie MeSH
- ileum metabolismus mikrobiologie MeSH
- kolon metabolismus mikrobiologie MeSH
- miniaturní prasata MeSH
- mutace fyziologie MeSH
- prasata MeSH
- Salmonella typhimurium genetika izolace a purifikace MeSH
- salmonelóza genetika metabolismus patologie MeSH
- toll-like receptor 4 metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- toll-like receptor 4 MeSH
Salmonella Typhimurium is a Gram-negative bacterium that causes enterocolitis in humans and pigs. Lipopolysaccharide (LPS) is a component of the outer leaflet of Gram-negative bacteria that provokes endotoxin shock. LPS can be synthesized completely or incompletely and creates S (smooth) or R (rough) chemotypes. Toll-like receptors (TLR) 2, 4, and 9 initiate an inflammatory reaction to combat bacterial infections. We associated/challenged one-week-old gnotobiotic piglets with wild-type S. Typhimurium with S chemotype or its isogenic ∆rfa mutants with R chemotype LPS. The wild-type S. Typhimurium induced TLR2 and TLR4 mRNA expression but not TLR9 mRNA expression in the ileum and colon of one-week-old gnotobiotic piglets 24 h after challenge. The TLR2 and TLR4 stimulatory effects of the S. Typhimurium ∆rfa mutants were related to the completeness of their LPS chain. The transcription of IL-12/23 p40, IFN-γ, and IL-6 in the intestine and the intestinal and plasmatic levels of IL-12/23 p40 and IL-6 but not IFN-γ were related to the activation of TLR2 and TLR4 signaling pathways. The avirulent S. Typhimurium ∆rfa mutants are potentially useful for modulation of the TLR2 and TLR4 signaling pathways to protect the immunocompromised gnotobiotic piglets against subsequent infection with the virulent S. Typhimurium.
Zobrazit více v PubMed
Raetz C.R., Whitfield C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 2002;71:635–700. doi: 10.1146/annurev.biochem.71.110601.135414. PubMed DOI PMC
Caroff M., Karibian D. Structure of bacterial lipopolysaccharides. Carbohydr. Res. 2003;338:2431–2447. doi: 10.1016/j.carres.2003.07.010. PubMed DOI
Hitchcock P.J., Leive L., Makela P.H., Rietschel E.T., Strittmatter W., Morrison D.C. Lipopolysaccharide nomenclature--past, present, and future. J. Bacteriol. 1986;166:699–705. doi: 10.1128/JB.166.3.699-705.1986. PubMed DOI PMC
Molinaro A., Holst O., Di L.F., Callaghan M., Nurisso A., D′Errico G., Zamyatina A., Peri F., Berisio R., Jerala R., et al. Chemistry of lipid A: At the heart of innate immunity. Chemistry. 2015;21:500–519. doi: 10.1002/chem.201403923. PubMed DOI
Rietschel E.T., Brade H., Brade L., Brandenburg K., Schade U., Seydel U., Zahringer U., Galanos C., Luderitz O., Westphal O. Lipid A, the endotoxic center of bacterial lipopolysaccharides: Relation of chemical structure to biological activity. Prog. Clin. Biol. Res. 1987;231:25–53. doi: 10.1007/BF01716559. PubMed DOI
Freudenberg M.A., Tchaptchet S., Keck S., Fejer G., Huber M., Schutze N., Beutler B., Galanos C. Lipopolysaccharide sensing an important factor in the innate immune response to Gram-negative bacterial infections: Benefits and hazards of LPS hypersensitivity. Immunobiology. 2008;213:193–203. doi: 10.1016/j.imbio.2007.11.008. PubMed DOI
Huber M., Kalis C., Keck S., Jiang Z., Georgel P., Du X., Shamel L., Sovath S., Mudd S., Beutler B., et al. R-form LPS, the master key to the activation ofTLR4/MD-2-positive cells. Eur. J. Immunol. 2006;36:701–711. doi: 10.1002/eji.200535593. PubMed DOI
Nikaido H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science. 1994;264:382–388. doi: 10.1126/science.8153625. PubMed DOI
Beveridge T.J. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 1999;181:4725–4733. doi: 10.1128/JB.181.16.4725-4733.1999. PubMed DOI PMC
Cinel I., Opal S.M. Molecular biology of inflammation and sepsis: A primer. Crit. Care Med. 2009;37:291–304. doi: 10.1097/CCM.0b013e31819267fb. PubMed DOI
Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885–891. doi: 10.1038/nature01326. PubMed DOI
Beutler B., Hoebe K., Du X., Ulevitch R.J. How we detect microbes and respond to them: The Toll-like receptors and their transducers. J. Leukoc. Biol. 2003;74:479–485. doi: 10.1189/jlb.0203082. PubMed DOI
Freudenberg M.A., Merlin T., Gumenscheimer M., Kalis C., Landmann R., Galanos C. Role of lipopolysaccharide susceptibility in the innate immune response to Salmonella typhimurium infection: LPS, a primary target for recognition of Gram-negative bacteria. Microbes Infect. 2001;3:1213–1222. doi: 10.1016/S1286-4579(01)01481-2. PubMed DOI
Cavaillon J.M. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon. 2018;149:45–53. doi: 10.1016/j.toxicon.2017.10.016. PubMed DOI
Cavaillon J.M., Singer M., Skirecki T. Sepsis therapies: Learning from 30 years of failure of translational research to propose new leads. EMBO Mol. Med. 2020;12:e10128. doi: 10.15252/emmm.201810128. PubMed DOI PMC
Mehta S., Gill S.E. Improving clinical outcomes in sepsis and multiple organ dysfunction through precision medicine. J. Thorac. Dis. 2019;11:21–28. doi: 10.21037/jtd.2018.11.74. PubMed DOI PMC
Liu D., Cao S., Zhou Y., Xiong Y. Recent advances in endotoxin tolerance. J. Cell Biochem. 2019;120:56–70. doi: 10.1002/jcb.27547. PubMed DOI
Ryu J.K., Kim S.J., Rah S.H., Kang J.I., Jung H.E., Lee D., Lee H.K., Lee J.O., Park B.S., Yoon T.Y., et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity. 2017;46:38–50. doi: 10.1016/j.immuni.2016.11.007. PubMed DOI
Kagan J.C. Lipopolysaccharide detection across the kingdoms of life. Trends Immunol. 2017;38:696–704. doi: 10.1016/j.it.2017.05.001. PubMed DOI PMC
Oswald I.P. Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Vet. Res. 2006;37:359–368. doi: 10.1051/vetres:2006006. PubMed DOI
Heine H., Rietschel E.T., Ulmer A.J. The biology of endotoxin. Mol. Biotechnol. 2001;19:279–296. doi: 10.1385/MB:19:3:279. PubMed DOI
Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006. PubMed DOI
Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 2016;16:35–50. doi: 10.1038/nri.2015.8. PubMed DOI
Park B.S., Lee J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 2013;45:e66. doi: 10.1038/emm.2013.97. PubMed DOI PMC
Raby A.C., Holst B., Le B.E., Diaz C., Ferran E., Conraux L., Guillemot J.C., Coles B., Kift-Morgan A., Colmont C.S., et al. Targeting the TLR co-receptor CD14 with TLR2-derived peptides modulates immune responses to pathogens. Sci. Transl. Med. 2013;5:185ra64. doi: 10.1126/scitranslmed.3005544. PubMed DOI
Baumann C.L., Aspalter I.M., Sharif O., Pichlmair A., Bluml S., Grebien F., Bruckner M., Pasierbek P., Aumayr K., Planyavsky M., et al. CD14 is a coreceptor of Toll-like receptors 7 and 9. J. Exp. Med. 2010;207:2689–2701. doi: 10.1084/jem.20101111. PubMed DOI PMC
Osuchowski M.F., Ayala A., Bahrami S., Bauer M., Boros M., Cavaillon J.M., Chaudry I.H., Coopersmith C.M., Deutschman C., Drechsler S., et al. Minimum quality threshold in pre-clinical sepsis studies (MQTiPSS): An international expert consensus initiative for improvement of animal modeling in sepsis. Infection. 2018;46:687–691. doi: 10.1007/s15010-018-1183-8. PubMed DOI PMC
Bassols A., Costa C., Eckersall P.D., Osada J., Sabria J., Tibau J. The pig as an animal model for human pathologies: A proteomics perspective. Proteom. Clin. Appl. 2014;8:715–731. doi: 10.1002/prca.201300099. PubMed DOI
Xiao L., Estelle J., Kiilerich P., Ramayo-Caldas Y., Xia Z., Feng Q., Liang S., Pedersen A.O., Kjeldsen N.J., Liu C., et al. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 2016;1:16161. doi: 10.1038/nmicrobiol.2016.161. PubMed DOI
Burrin D., Sangild P.T., Stoll B., Thymann T., Buddington R., Marini J., Olutoye O., Shulman R.J. Translational Advances in Pediatric Nutrition and Gastroenterology: New Insights from Pig Models. Annu. Rev. Anim Biosci. 2020;8:321–354. doi: 10.1146/annurev-animal-020518-115142. PubMed DOI
Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. The pig: A model for human infectious diseases. Trends Microbiol. 2012;20:50–57. doi: 10.1016/j.tim.2011.11.002. PubMed DOI PMC
Waterhouse A., Leslie D.C., Bolgen D.E., Lightbown S., Dimitrakakis N., Cartwright M.J., Seiler B., Lightbown K., Smith K., Lombardo P., et al. Modified Clinical Monitoring Assesment Criteria for Multi-Organ Failure during Bacteremia and Sepsis Progression in a Pig Model. [(accessed on 16 August 2020)];Adv. Crit. Care Med. 2018 1:2. Available online: http://www.scientificoajournals.org/pdf/ccm.1002.pdf.
Hurley D., McCusker M.P., Fanning S., Martins M. Salmonella-host interactions-modulation of the host innate immune system. Front. Immunol. 2014;5:481. doi: 10.3389/fimmu.2014.00481. PubMed DOI PMC
Campos J., Mourao J., Peixe L., Antunes P. Non-typhoidal Salmonella in the pig production chain: A comprehensive analysis of Its impact on human health. Pathogens. 2019;8:19. doi: 10.3390/pathogens8010019. PubMed DOI PMC
Kaiser P., Hardt W.D. Salmonella typhimurium diarrhea: Switching the mucosal epithelium from homeostasis to defense. Curr. Opin. Immunol. 2011;23:456–463. doi: 10.1016/j.coi.2011.06.004. PubMed DOI
Barthel M., Hapfelmeier S., Quintanilla-Martinez L., Kremer M., Rohde M., Hogardt M., Pfeffer K., Russmann H., Hardt W.D. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 2003;71:2839–2858. doi: 10.1128/IAI.71.5.2839-2858.2003. PubMed DOI PMC
Zhang S., Kingsley R.A., Santos R.L., Andrews-Polymenis H., Raffatellu M., Figueiredo J., Nunes J., Tsolis R.M., Adams L.G., Baumler A.J. Molecular pathogenesis of Salmonella enterica serotype typhimurium-induced diarrhea. Infect. Immun. 2003;71:1–12. doi: 10.1128/IAI.71.1.1-12.2003. PubMed DOI PMC
Wen S.C., Best E., Nourse C. Non-typhoidal Salmonella infections in children: Review of literature and recommendations for management. J. Paediatr. Child. Health. 2017;53:936–941. doi: 10.1111/jpc.13585. PubMed DOI
Rai B., Utekar T., Ray R. Preterm delivery and neonatal meningitis due to transplacental acquisition of non-typhoidal Salmonella serovar montevideo. BMJ Case. Rep. 2014;2014 doi: 10.1136/bcr-2014-205082. PubMed DOI PMC
Mooser C., Gomez de A.M., Ganal-Vonarburg S.C. Standardization in host-microbiota interaction studies: Challenges, gnotobiology as a tool, and perspective. Curr. Opin. Microbiol. 2018;44:50–60. doi: 10.1016/j.mib.2018.07.007. PubMed DOI
Ducarmon Q.R., Zwittink R.D., Hornung B.V.H., van S.W., Young V.B., Kuijper E.J. Gut icrobiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev. 2019;83 doi: 10.1128/MMBR.00007-19. PubMed DOI PMC
Splichalova A., Splichal I., Chmelarova P., Trebichavsky I. Alarmin HMGB1 is released in the small intestine of gnotobiotic piglets infected with enteric pathogens and its level in plasma reflects severity of sepsis. J. Clin. Immunol. 2011;31:488–497. doi: 10.1007/s10875-010-9505-3. PubMed DOI
Splichalova A., Trebichavsky I., Rada V., Vlkova E., Sonnenborn U., Splichal I. Interference of Bifidobacterium choerinum or Escherichia coli Nissle 1917 with Salmonella Typhimurium in gnotobiotic piglets correlates with cytokine patterns in blood and intestine. Clin. Exp. Immunol. 2011;163:242–249. doi: 10.1111/j.1365-2249.2010.04283.x. PubMed DOI PMC
Foster N., Lovell M.A., Marston K.L., Hulme S.D., Frost A.J., Bland P., Barrow P.A. Rapid protection of gnotobiotic pigs against experimental salmonellosis following induction of polymorphonuclear leukocytes by avirulent Salmonella enterica. Infect. Immun. 2003;71:2182–2191. doi: 10.1128/IAI.71.4.2182-2191.2003. PubMed DOI PMC
Splichalova A., Slavikova V., Splichalova Z., Splichal I. Preterm life in sterile conditions: A study on preterm, germ-free piglets. Front. Immunol. 2018;9:220. doi: 10.3389/fimmu.2018.00220. PubMed DOI PMC
Basic M., Bleich A. Gnotobiotics: Past, present and future. Lab. Anim. 2019;53:232–243. doi: 10.1177/0023677219836715. PubMed DOI
Salmon H., Berri M., Gerdts V., Meurens F. Humoral and cellular factors of maternal immunity in swine. Dev. Comp. Immunol. 2009;33:384–393. doi: 10.1016/j.dci.2008.07.007. PubMed DOI
Roberts R.M., Green J.A., Schulz L.C. The evolution of the placenta. Reproduction. 2016;152:R179–R189. doi: 10.1530/REP-16-0325. PubMed DOI PMC
Galen J.E., Buskirk A.D., Tennant S.M., Pasetti M.F. Live attenuated human Salmonella vaccine candidates: Tracking the pathogen in natural infection and stimulation of host immunity. Ecosal. Plus. 2016:7. doi: 10.1128/ecosalplus.ESP-0010-2016. PubMed DOI PMC
Kong Q., Yang J., Liu Q., Alamuri P., Roland K.L., Curtiss R. III Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar Typhimurium. Infect. Immun. 2011;79:4227–4239. doi: 10.1128/IAI.05398-11. PubMed DOI PMC
Chang Y.F., Hou J.N., Lin H.H., Wu C.P., Chu C. Differences in immune responses of pigs vaccinated with Salmonella Typhimurium and S. Choleraesuis strains and challenged with S. Choleraesuis. Comp. Immunol. Microbiol. Infect. Dis. 2019;65:41–47. doi: 10.1016/j.cimid.2019.04.003. PubMed DOI
Iwasaki A., Medzhitov R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 2015;16:343–353. doi: 10.1038/ni.3123. PubMed DOI PMC
McClelland M., Sanderson K.E., Spieth J., Clifton S.W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M., Du F., et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001;413:852–856. doi: 10.1038/35101614. PubMed DOI
Clarke R.C., Gyles C.L. Virulence of wild and mutant strains of Salmonella typhimurium in ligated intestinal segments of calves, pigs, and rabbits. Am. J. Vet. Res. 1987;48:504–510. PubMed
Trebichavsky I., Dlabac V., Rehakova Z., Zahradnickova M., Splichal I. Cellular changes and cytokine expression in the ilea of gnotobiotic piglets resulting from peroral Salmonella typhimurium challenge. Infect. Immun. 1997;65:5244–5249. doi: 10.1128/IAI.65.12.5244-5249.1997. PubMed DOI PMC
Splichal I., Rychlik I., Gregorova D., Sebkova A., Trebichavsky I., Splichalova A., Muneta Y., Mori Y. Susceptibility of germ-free pigs to challenge with protease mutants of Salmonella enterica serovar Typhimurium. Immunobiology. 2007;212:577–582. doi: 10.1016/j.imbio.2007.05.001. PubMed DOI
Trebichavsky I., Splichalova A., Rychlik I., Hojna H., Muneta Y., Mori Y., Splichal I. Attenuated aroA Salmonella enterica serovar Typhimurium does not induce inflammatory response and early protection of gnotobiotic pigs against parental virulent LT2 strain. Vaccine. 2006;24:4285–4289. doi: 10.1016/j.vaccine.2006.02.054. PubMed DOI
Goldfarb R.D., Dellinger R.P., Parrillo J.E. Porcine models of severe sepsis: Emphasis on porcine peritonitis. Shock. 2005;24(Suppl. 1):75–81. doi: 10.1097/01.shk.0000191337.01036.b7. PubMed DOI
Fink M.P. Animal models of sepsis. Virulence. 2014;5:143–153. doi: 10.4161/viru.26083. PubMed DOI PMC
Pierrakos C., Vincent J.L. Sepsis biomarkers: A review. Crit. Care. 2010;14:R15. doi: 10.1186/cc8872. PubMed DOI PMC
Galanos C., Freudenberg M.A. Mechanisms of endotoxin shock and endotoxin hypersensitivity. Immunobiology. 1993;187:346–356. doi: 10.1016/S0171-2985(11)80349-9. PubMed DOI
Splichal I., Trebichavsky I., Splichalova A., Barrow P.A. Protection of gnotobiotic pigs against Salmonella enterica serotype Typhimurium by rough mutant of the same serotype is accompanied by the change of local and systemic cytokine response. Vet. Immunol. Immunopathol. 2005;103:155–161. doi: 10.1016/j.vetimm.2004.09.001. PubMed DOI
Splichal I., Donovan S.M., Jenistova V., Splichalova I., Salmonova H., Vlkova E., Neuzil B.V., Sinkora M., Killer J., Skrivanova E., et al. High mobility group box 1 and TLR4 signaling pathway in gnotobiotic piglets colonized/infected with L. amylovorus, L. mucosae, E. coli Nissle 1917 and S. Typhimurium. Int. J. Mol. Sci. 2019;20:6294. doi: 10.3390/ijms20246294. PubMed DOI PMC
Splichalova A., Splichalova Z., Karasova D., Rychlik I., Trevisi P., Sinkora M., Splichal I. Impact of the lipopolysaccharide chemotype of Salmonella enterica serovar Typhimurium on virulence in gnotobiotic piglets. Toxins. 2019;11:534. doi: 10.3390/toxins11090534. PubMed DOI PMC
Awoniyi M., Miller S.I., Wilson C.B., Hajjar A.M., Smith K.D. Homeostatic regulation of Salmonella-induced mucosal inflammation and injury by IL-23. PLoS. ONE. 2012;7:e37311. doi: 10.1371/journal.pone.0037311. PubMed DOI PMC
Kak G., Raza M., Tiwari B.K. Interferon-gamma (IFN-gamma): Exploring its implications in infectious diseases. Biomol. Concepts. 2018;9:64–79. doi: 10.1515/bmc-2018-0007. PubMed DOI
Song J., Park D.W., Moon S., Cho H.J., Park J.H., Seok H., Choi W.S. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: A prospective controlled study according to the Sepsis-3 definitions. BMC Infect. Dis. 2019;19:968. doi: 10.1186/s12879-019-4618-7. PubMed DOI PMC
Splichal I., Splichalova A. Experimental Enteric Bacterial Infections in Pigs. J. Infect. Dis. 2018;218:504–505. doi: 10.1093/infdis/jiy185. PubMed DOI
Thorgersen E.B., Hellerud B.C., Nielsen E.W., Barratt-Due A., Fure H., Lindstad J.K., Pharo A., Fosse E., Tonnessen T.I., Johansen H.T., et al. CD14 inhibition efficiently attenuates early inflammatory and hemostatic responses in Escherichia coli sepsis in pigs. FASEB J. 2010;24:712–722. doi: 10.1096/fj.09-140798. PubMed DOI PMC
Burkey T.E., Skjolaas K.A., Dritz S.S., Minton J.E. Expression of Toll-like receptors, interleukin 8, macrophage migration inhibitory factor, and osteopontin in tissues from pigs challenged with Salmonella enterica serovar Typhimurium or serovar Choleraesuis. Vet. Immunol. Immunopathol. 2007;115:309–319. doi: 10.1016/j.vetimm.2006.11.012. PubMed DOI
Burkey T.E., Skjolaas K.A., Dritz S.S., Minton J.E. Expression of porcine Toll-like receptor 2, 4 and 9 gene transcripts in the presence of lipopolysaccharide and Salmonella enterica serovars Typhimurium and Choleraesuis. Vet. Immunol. Immunopathol. 2009;130:96–101. doi: 10.1016/j.vetimm.2008.12.027. PubMed DOI
Collado-Romero M., Arce C., Ramirez-Boo M., Carvajal A., Garrido J.J. Quantitative analysis of the immune response upon Salmonella typhimurium infection along the porcine intestinal gut. Vet. Res. 2010;41:23. doi: 10.1051/vetres/2009072. PubMed DOI PMC
Vaure C., Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol. 2014;5:316. doi: 10.3389/fimmu.2014.00316. PubMed DOI PMC
Vogt S.L., Pena-Diaz J., Finlay B.B. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe. 2015;34:106–115. doi: 10.1016/j.anaerobe.2015.05.002. PubMed DOI
Dziarski R., Wang Q., Miyake K., Kirschning C.J., Gupta D. MD-2 enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components. J. Immunol. 2001;166:1938–1944. doi: 10.4049/jimmunol.166.3.1938. PubMed DOI
Lembo A., Kalis C., Kirschning C.J., Mitolo V., Jirillo E., Wagner H., Galanos C., Freudenberg M.A. Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice. Infect. Immun. 2003;71:6058–6062. doi: 10.1128/IAI.71.10.6058-6062.2003. PubMed DOI PMC
Van Bergenhenegouwen J., Plantinga T.S., Joosten L.A., Netea M.G., Folkerts G., Kraneveld A.D., Garssen J., Vos A.P. TLR2 & Co: A critical analysis of the complex interactions between TLR2 and coreceptors. J. Leukoc. Biol. 2013;94:885–902. doi: 10.1189/jlb.0113003. PubMed DOI
Chen G.Y., Nunez G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010;10:826–837. doi: 10.1038/nri2873. PubMed DOI PMC
Zughaier S.M., Zimmer S.M., Datta A., Carlson R.W., Stephens D.S. Differential induction of the toll-like receptor 4-MyD88-dependent and -independent signaling pathways by endotoxins. Infect. Immun. 2005;73:2940–2950. doi: 10.1128/IAI.73.5.2940-2950.2005. PubMed DOI PMC
Tan Y., Kagan J.C. A cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol. Cell. 2014;54:212–223. doi: 10.1016/j.molcel.2014.03.012. PubMed DOI PMC
Cho S.Y., Choi J.H. Biomarkers of sepsis. Infect. Chemother. 2014;46:1–12. doi: 10.3947/ic.2014.46.1.1. PubMed DOI PMC
Splichalova A., Splichal I. Local and systemic occurrences of HMGB1 in gnotobiotic piglets infected with E. coli O55 are related to bacterial translocation and inflammatory cytokines. Cytokine. 2012;60:597–600. doi: 10.1016/j.cyto.2012.07.026. PubMed DOI
Croxford A.L., Kulig P., Becher B. IL-12-and IL-23 in health and disease. Cytokine Growth Factor Rev. 2014;25:415–421. doi: 10.1016/j.cytogfr.2014.07.017. PubMed DOI
Bette M., Jin S.C., Germann T., Schafer M.K., Weihe E., Rude E., Fleischer B. Differential expression of mRNA encoding interleukin-12 p35 and p40 subunits in situ. Eur. J. Immunol. 1994;24:2435–2440. doi: 10.1002/eji.1830241026. PubMed DOI
Castellheim A., Thorgersen E.B., Hellerud B.C., Pharo A., Johansen H.T., Brosstad F., Gaustad P., Brun H., Fosse E., Tonnessen T.I., et al. New biomarkers in an acute model of live Escherichia coli-induced sepsis in pigs. Scand. J. Immunol. 2008;68:75–84. doi: 10.1111/j.1365-3083.2008.02122.x. PubMed DOI
Takaoka A., Yanai H. Interferon signalling network in innate defence. Cell Microbiol. 2006;8:907–922. doi: 10.1111/j.1462-5822.2006.00716.x. PubMed DOI
Trinchieri G. Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 1995;13:251–276. doi: 10.1146/annurev.iy.13.040195.001343. PubMed DOI
Ingram J.P., Brodsky I.E., Balachandran S. Interferon-gamma in Salmonella pathogenesis: New tricks for an old dog. Cytokine. 2017;98:27–32. doi: 10.1016/j.cyto.2016.10.009. PubMed DOI PMC
Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Mantovani A., Garlanda C., Doni A., Bottazzi B. Pentraxins in innate immunity: From C-reactive protein to the long pentraxin PTX3. J. Clin. Immunol. 2008;28:1–13. doi: 10.1007/s10875-007-9126-7. PubMed DOI
Reinhart K., Bauer M., Riedemann N.C., Hartog C.S. New approaches to sepsis: Molecular diagnostics and biomarkers. Clin. Microbiol. Rev. 2012;25:609–634. doi: 10.1128/CMR.00016-12. PubMed DOI PMC
Fan S.L., Miller N.S., Lee J., Remick D.G. Diagnosing sepsis—The role of laboratory medicine. Clin. Chim. Acta. 2016;460:203–210. doi: 10.1016/j.cca.2016.07.002. PubMed DOI PMC
Soderholm A.T., Pedicord V.A. Intestinal epithelial cells: At the interface of the microbiota and mucosal immunity. Immunology. 2019;158:267–280. doi: 10.1111/imm.13117. PubMed DOI PMC
Mandel L., Travnicek J. The minipig as a model in gnotobiology. Nahrung. 1987;31:613–618. doi: 10.1002/food.19870310580. PubMed DOI
Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI
High Mobility Group Box 1 in Pig Amniotic Membrane Experimentally Infected with E. coli O55