Release of HMGB1 and Toll-like Receptors 2, 4, and 9 Signaling Are Modulated by Bifidobacterium animalis subsp. lactis BB-12 and Salmonella Typhimurium in a Gnotobiotic Piglet Model of Preterm Infants

. 2023 Jan 24 ; 24 (3) : . [epub] 20230124

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36768650

Grantová podpora
13-14736S Czech Science Foundation
20-03282S Czech Science Foundation

Gnotobiotic (GN) animals with defined microbiota allow us to study host-microbiota and microbiota-microbiota interferences. Preterm germ-free (GF) piglets were mono-associated with probiotic Bifidobacterium animalis subsp. lactis BB-12 (BB12) to ameliorate/prevent the consequences of infection with the Salmonella Typhimurium strain LT2 (LT2). Goblet cell density; expression of Toll-like receptors (TLRs) 2, 4, and 9; high mobility group box 1 (HMGB1); interleukin (IL)-6; and IL-12/23p40 were analyzed to evaluate the possible modulatory effect of BB12. BB12 prevented an LT2-induced decrease of goblet cell density in the colon. TLRs signaling modified by LT2 was not influenced by the previous association with BB12. The expression of HMGB1, IL-6, and IL12/23p40 in the jejunum, ileum, and colon and their levels in plasma were all decreased by BB12, but these changes were not statistically significant. In the colon, differences in HMGB1 distribution between the GF and LT2 piglet groups were observed. In conclusion, the mono-association of GF piglets with BB12 prior to LT2 infection partially ameliorated the inflammatory response to LT2 infection.

Zobrazit více v PubMed

Walani S.R. Global Burden of Preterm Birth. Int. J. Gynaecol. Obstet. 2020;150:31–33. doi: 10.1002/ijgo.13195. PubMed DOI

Humberg A., Fortmann I., Siller B., Kopp M.V., Herting E., Göpel W., Härtel C. German Neonatal Network, German Center for Lung Research and Priming Immunity at the beginning of life (PRIMAL) Consortium Preterm Birth and Sustained Inflammation: Consequences for the Neonate. Semin. Immunopathol. 2020;42:451–468. doi: 10.1007/s00281-020-00803-2. PubMed DOI PMC

Goldstein R.F., Malcolm W.F. Care of the Neonatal Intensive Care Unit Graduate after Discharge. Pediatr. Clin. North Am. 2019;66:489–508. doi: 10.1016/j.pcl.2018.12.014. PubMed DOI

Da Fonseca E.B., Damião R., Moreira D.A. Preterm Birth Prevention. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:40–49. doi: 10.1016/j.bpobgyn.2020.09.003. PubMed DOI

Rutayisire E., Huang K., Liu Y., Tao F. The Mode of Delivery Affects the Diversity and Colonization Pattern of the Gut Microbiota during the First Year of Infants’ Life: A Systematic Review. BMC Gastroenterol. 2016;16:86. doi: 10.1186/s12876-016-0498-0. PubMed DOI PMC

Wang J., Dominguez-Bello M.G. Microbial Colonization Alters Neonatal Gut Metabolome. Nat. Microbiol. 2020;5:785–786. doi: 10.1038/s41564-020-0734-9. PubMed DOI

Nagpal R., Kurakawa T., Tsuji H., Takahashi T., Kawashima K., Nagata S., Nomoto K., Yamashiro Y. Evolution of Gut Bifidobacterium Population in Healthy Japanese Infants over the First Three Years of Life: A Quantitative Assessment. Sci. Rep. 2017;7:10097. doi: 10.1038/s41598-017-10711-5. PubMed DOI PMC

Akagawa S., Tsuji S., Onuma C., Akagawa Y., Yamaguchi T., Yamagishi M., Yamanouchi S., Kimata T., Sekiya S.-I., Ohashi A., et al. Effect of Delivery Mode and Nutrition on Gut Microbiota in Neonates. Ann. Nutr. Metab. 2019;74:132–139. doi: 10.1159/000496427. PubMed DOI

Brooks B., Firek B.A., Miller C.S., Sharon I., Thomas B.C., Baker R., Morowitz M.J., Banfield J.F. Microbes in the Neonatal Intensive Care Unit Resemble Those Found in the Gut of Premature Infants. Microbiome. 2014;2:1. doi: 10.1186/2049-2618-2-1. PubMed DOI PMC

Mueller N.T., Differding M.K., Østbye T., Hoyo C., Benjamin-Neelon S.E. Association of Birth Mode of Delivery with Infant Faecal Microbiota, Potential Pathobionts, and Short Chain Fatty Acids: A Longitudinal Study over the First Year of Life. BJOG. 2021;128:1293–1303. doi: 10.1111/1471-0528.16633. PubMed DOI PMC

Fan Y., Pedersen O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021;19:55–71. doi: 10.1038/s41579-020-0433-9. PubMed DOI

Donovan S.M. Evolution of the Gut Microbiome in Infancy within an Ecological Context. Curr. Opin. Clin. Nutr. Metab. Care. 2020;23:223–227. doi: 10.1097/MCO.0000000000000650. PubMed DOI PMC

Kawai T., Akira S. Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006. PubMed DOI

Gensollen T., Iyer S.S., Kasper D.L., Blumberg R.S. How Colonization by Microbiota in Early Life Shapes the Immune System. Science. 2016;352:539–544. doi: 10.1126/science.aad9378. PubMed DOI PMC

Gong T., Liu L., Jiang W., Zhou R. DAMP-Sensing Receptors in Sterile Inflammation and Inflammatory Diseases. Nat. Rev. Immunol. 2020;20:95–112. doi: 10.1038/s41577-019-0215-7. PubMed DOI

Meizlish M.L., Franklin R.A., Zhou X., Medzhitov R. Tissue Homeostasis and Inflammation. Annu. Rev. Immunol. 2021;39:557–581. doi: 10.1146/annurev-immunol-061020-053734. PubMed DOI

Bianchi M.E., Crippa M.P., Manfredi A.A., Mezzapelle R., Rovere Querini P., Venereau E. High-Mobility Group Box 1 Protein Orchestrates Responses to Tissue Damage via Inflammation, Innate and Adaptive Immunity, and Tissue Repair. Immunol. Rev. 2017;280:74–82. doi: 10.1111/imr.12601. PubMed DOI

Paudel Y.N., Angelopoulou E., Piperi C., Balasubramaniam V.R.M.T., Othman I., Shaikh M.F. Enlightening the Role of High Mobility Group Box 1 (HMGB1) in Inflammation: Updates on Receptor Signalling. Eur. J. Pharmacol. 2019;858:172487. doi: 10.1016/j.ejphar.2019.172487. PubMed DOI

Van Best N., Trepels-Kottek S., Savelkoul P., Orlikowsky T., Hornef M.W., Penders J. Influence of Probiotic Supplementation on the Developing Microbiota in Human Preterm Neonates. Gut Microbes. 2020;12:1826747. doi: 10.1080/19490976.2020.1826747. PubMed DOI PMC

Samara J., Moossavi S., Alshaikh B., Ortega V.A., Pettersen V.K., Ferdous T., Hoops S.L., Soraisham A., Vayalumkal J., Dersch-Mills D., et al. Supplementation with a Probiotic Mixture Accelerates Gut Microbiome Maturation and Reduces Intestinal Inflammation in Extremely Preterm Infants. Cell Host Microbe. 2022;30:696–711.e5. doi: 10.1016/j.chom.2022.04.005. PubMed DOI

Plummer E.L., Danielewski J.A., Garland S.M., Su J., Jacobs S.E., Murray G.L. The Effect of Probiotic Supplementation on the Gut Microbiota of Preterm Infants. J. Med. Microbiol. 2021;70:001403. doi: 10.1099/jmm.0.001403. PubMed DOI PMC

Lee E.-S., Song E.-J., Nam Y.-D., Lee S.-Y. Probiotics in Human Health and Disease: From Nutribiotics to Pharmabiotics. J. Microbiol. 2018;56:773–782. doi: 10.1007/s12275-018-8293-y. PubMed DOI

O’Brien C.E., Meier A.K., Cernioglo K., Mitchell R.D., Casaburi G., Frese S.A., Henrick B.M., Underwood M.A., Smilowitz J.T. Early Probiotic Supplementation with B. Infantis in Breastfed Infants Leads to Persistent Colonization at 1 Year. Pediatr. Res. 2022;91:627–636. doi: 10.1038/s41390-020-01350-0. PubMed DOI PMC

Ducarmon Q.R., Zwittink R.D., Hornung B.V.H., van Schaik W., Young V.B., Kuijper E.J. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev. 2019;83:e00007-19. doi: 10.1128/MMBR.00007-19. PubMed DOI PMC

Jungersen M., Wind A., Johansen E., Christensen J.E., Stuer-Lauridsen B., Eskesen D. The Science behind the Probiotic Strain Bifidobacterium Animalis Subsp. Lactis BB-12(®) Microorganisms. 2014;2:92–110. doi: 10.3390/microorganisms2020092. PubMed DOI PMC

Pang J., Wang S., Wang Z., Wu Y., Zhang X., Pi Y., Han D., Zhang S., Wang J. Xylo-Oligosaccharide Alleviates Salmonella Induced Inflammation by Stimulating Bifidobacterium Animalis and Inhibiting Salmonella Colonization. FASEB J. 2021;35:e21977. doi: 10.1096/fj.202100919RR. PubMed DOI

Ruff W.E., Greiling T.M., Kriegel M.A. Host-Microbiota Interactions in Immune-Mediated Diseases. Nat. Rev. Microbiol. 2020;18:521–538. doi: 10.1038/s41579-020-0367-2. PubMed DOI

Thaiss C.A., Zmora N., Levy M., Elinav E. The Microbiome and Innate Immunity. Nature. 2016;535:65–74. doi: 10.1038/nature18847. PubMed DOI

Splichalova A., Slavikova V., Splichalova Z., Splichal I. Preterm Life in Sterile Conditions: A Study on Preterm, Germ-Free Piglets. Front. Immunol. 2018;9:220. doi: 10.3389/fimmu.2018.00220. PubMed DOI PMC

Sampah M.E.S., Hackam D.J. Dysregulated Mucosal Immunity and Associated Pathogeneses in Preterm Neonates. Front. Immunol. 2020;11:899. doi: 10.3389/fimmu.2020.00899. PubMed DOI PMC

Kulkarni T., Majarikar S., Deshmukh M., Ananthan A., Balasubramanian H., Keil A., Patole S. Probiotic Sepsis in Preterm Neonates-a Systematic Review. Eur. J. Pediatr. 2022;181:2249–2262. doi: 10.1007/s00431-022-04452-5. PubMed DOI

Wikler D. Must Research Benefit Human Subjects If It Is to Be Permissible? J. Med. Ethics. 2017;43:114–117. doi: 10.1136/medethics-2015-103123. PubMed DOI PMC

Duval K., Grover H., Han L.-H., Mou Y., Pegoraro A.F., Fredberg J., Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology. 2017;32:266–277. doi: 10.1152/physiol.00036.2016. PubMed DOI PMC

Kovler M.L., Sodhi C.P., Hackam D.J. Precision-Based Modeling Approaches for Necrotizing Enterocolitis. Dis. Model. Mech. 2020;13:dmm044388. doi: 10.1242/dmm.044388. PubMed DOI PMC

Rutai A., Zsikai B., Tallósy S.P., Érces D., Bizánc L., Juhász L., Poles M.Z., Sóki J., Baaity Z., Fejes R., et al. A Porcine Sepsis Model with Numerical Scoring for Early Prediction of Severity. Front. Med. 2022;9:867796. doi: 10.3389/fmed.2022.867796. PubMed DOI PMC

Sangild P.T., Siggers R.H., Schmidt M., Elnif J., Bjornvad C.R., Thymann T., Grondahl M.L., Hansen A.K., Jensen S.K., Boye M., et al. Diet- and Colonization-Dependent Intestinal Dysfunction Predisposes to Necrotizing Enterocolitis in Preterm Pigs. Gastroenterology. 2006;130:1776–1792. doi: 10.1053/j.gastro.2006.02.026. PubMed DOI

Nolan L.S., Wynn J.L., Good M. Exploring Clinically-Relevant Experimental Models of Neonatal Shock and Necrotizing Enterocolitis. Shock. 2020;53:596–604. doi: 10.1097/SHK.0000000000001507. PubMed DOI PMC

Lunney J.K., Van Goor A., Walker K.E., Hailstock T., Franklin J., Dai C. Importance of the Pig as a Human Biomedical Model. Sci. Transl. Med. 2021;13:eabd5758. doi: 10.1126/scitranslmed.abd5758. PubMed DOI

Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC

Xiao L., Estellé J., Kiilerich P., Ramayo-Caldas Y., Xia Z., Feng Q., Liang S., Pedersen A.Ø., Kjeldsen N.J., Liu C., et al. A Reference Gene Catalogue of the Pig Gut Microbiome. Nat. Microbiol. 2016;1:16161. doi: 10.1038/nmicrobiol.2016.161. PubMed DOI

Burrin D., Sangild P.T., Stoll B., Thymann T., Buddington R., Marini J., Olutoye O., Shulman R.J. Translational Advances in Pediatric Nutrition and Gastroenterology: New Insights from Pig Models. Annu. Rev. Anim. Biosci. 2020;8:321–354. doi: 10.1146/annurev-animal-020518-115142. PubMed DOI

Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. The Pig: A Model for Human Infectious Diseases. Trends Microbiol. 2012;20:50–57. doi: 10.1016/j.tim.2011.11.002. PubMed DOI PMC

Lu T., Yang B., Wang R., Qin C. Xenotransplantation: Current Status in Preclinical Research. Front. Immunol. 2019;10:3060. doi: 10.3389/fimmu.2019.03060. PubMed DOI PMC

Bæk O., Ren S., Brunse A., Sangild P.T., Nguyen D.N. Impaired Neonatal Immunity and Infection Resistance Following Fetal Growth Restriction in Preterm Pigs. Front. Immunol. 2020;11:1808. doi: 10.3389/fimmu.2020.01808. PubMed DOI PMC

Nguyen D.N., Jiang P., Frøkiær H., Heegaard P.M.H., Thymann T., Sangild P.T. Delayed Development of Systemic Immunity in Preterm Pigs as a Model for Preterm Infants. Sci. Rep. 2016;6:36816. doi: 10.1038/srep36816. PubMed DOI PMC

Splichalova A., Donovan S.M., Tlaskalova-Hogenova H., Stranak Z., Splichalova Z., Splichal I. Monoassociation of Preterm Germ-Free Piglets with Bifidobacterium Animalis Subsp. Lactis BB-12 and Its Impact on Infection with Salmonella typhimurium. Biomedicines. 2021;9:183. doi: 10.3390/biomedicines9020183. PubMed DOI PMC

Splichalova A., Splichalova Z., Karasova D., Rychlik I., Trevisi P., Sinkora M., Splichal I. Impact of the Lipopolysaccharide Chemotype of Salmonella enterica Serovar Typhimurium on Virulence in Gnotobiotic Piglets. Toxins. 2019;11:534. doi: 10.3390/toxins11090534. PubMed DOI PMC

Tlaskalova-Hogenova H., Mandel L., Trebichavsky I., Kovaru F., Barot R., Sterzl J. Development of Immune Responses in Early Pig Ontogeny. Vet. Immunol. Immunopathol. 1994;43:135–142. doi: 10.1016/0165-2427(94)90129-5. PubMed DOI

Cukrowska B., Kozáková H., Reháková Z., Sinkora J., Tlaskalová-Hogenová H. Specific Antibody and Immunoglobulin Responses after Intestinal Colonization of Germ-Free Piglets with Non-Pathogenic Escherichia Coli O86. Immunobiology. 2001;204:425–433. doi: 10.1078/0171-2985-00052. PubMed DOI

Zamora I.J., Stoll B., Ethun C.G., Sheikh F., Yu L., Burrin D.G., Brandt M.L., Olutoye O.O. Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis. PLoS ONE. 2015;10:e0125437. doi: 10.1371/journal.pone.0125437. PubMed DOI PMC

Azcarate-Peril M.A., Foster D.M., Cadenas M.B., Stone M.R., Jacobi S.K., Stauffer S.H., Pease A., Gookin J.L. Acute Necrotizing Enterocolitis of Preterm Piglets Is Characterized by Dysbiosis of Ileal Mucosa-Associated Bacteria. Gut Microbes. 2011;2:234–243. doi: 10.4161/gmic.2.4.16332. PubMed DOI PMC

Clarke R.C., Gyles C.L. Virulence of Wild and Mutant Strains of Salmonella typhimurium in Ligated Intestinal Segments of Calves, Pigs, and Rabbits. Am. J. Vet. Res. 1987;48:504–510. PubMed

Splichal I., Rychlik I., Splichalova I., Karasova D., Splichalova A. Toll-Like Receptor 4 Signaling in the Ileum and Colon of Gnotobiotic Piglets Infected with Salmonella typhimurium or Its Isogenic ∆rfa Mutants. Toxins. 2020;12:545. doi: 10.3390/toxins12090545. PubMed DOI PMC

Salmon H., Berri M., Gerdts V., Meurens F. Humoral and Cellular Factors of Maternal Immunity in Swine. Dev. Comp. Immunol. 2009;33:384–393. doi: 10.1016/j.dci.2008.07.007. PubMed DOI

Mair K.H., Sedlak C., Käser T., Pasternak A., Levast B., Gerner W., Saalmüller A., Summerfield A., Gerdts V., Wilson H.L., et al. The Porcine Innate Immune System: An Update. Dev. Comp. Immunol. 2014;45:321–343. doi: 10.1016/j.dci.2014.03.022. PubMed DOI PMC

Masi A.C., Stewart C.J. The Role of the Preterm Intestinal Microbiome in Sepsis and Necrotising Enterocolitis. Early Hum. Dev. 2019;138:104854. doi: 10.1016/j.earlhumdev.2019.104854. PubMed DOI

Hong C.R., Han S.M., Jaksic T. Surgical Considerations for Neonates with Necrotizing Enterocolitis. Semin. Fetal Neonatal Med. 2018;23:420–425. doi: 10.1016/j.siny.2018.08.007. PubMed DOI

Allaire J.M., Crowley S.M., Law H.T., Chang S.-Y., Ko H.-J., Vallance B.A. The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends Immunol. 2018;39:677–696. doi: 10.1016/j.it.2018.04.002. PubMed DOI

Linden S.K., Sutton P., Karlsson N.G., Korolik V., McGuckin M.A. Mucins in the Mucosal Barrier to Infection. Mucosal Immunol. 2008;1:183–197. doi: 10.1038/mi.2008.5. PubMed DOI PMC

Johansson M.E.V., Phillipson M., Petersson J., Velcich A., Holm L., Hansson G.C. The Inner of the Two Muc2 Mucin-Dependent Mucus Layers in Colon Is Devoid of Bacteria. Proc. Natl. Acad. Sci. USA. 2008;105:15064–15069. doi: 10.1073/pnas.0803124105. PubMed DOI PMC

Splichalova A., Pechar R., Killer J., Splichalova Z., Bunesova V.N., Vlkova E., Salmonova H.S., Splichal I. Colonization of Germ-Free Piglets with Mucinolytic and Non-Mucinolytic Bifidobacterium Boum Strains Isolated from the Intestine of Wild Boar and Their Interference with Salmonella typhimurium. Microorganisms. 2020;8:2002. doi: 10.3390/microorganisms8122002. PubMed DOI PMC

Puiman P.J., Jensen M., Stoll B., Renes I.B., de Bruijn A.C.J.M., Dorst K., Schierbeek H., Schmidt M., Boehm G., Burrin D.G., et al. Intestinal Threonine Utilization for Protein and Mucin Synthesis Is Decreased in Formula-Fed Preterm Pigs. J. Nutr. 2011;141:1306–1311. doi: 10.3945/jn.110.135145. PubMed DOI

Zarepour M., Bhullar K., Montero M., Ma C., Huang T., Velcich A., Xia L., Vallance B.A. The Mucin Muc2 Limits Pathogen Burdens and Epithelial Barrier Dysfunction during Salmonella enterica Serovar Typhimurium Colitis. Infect. Immun. 2013;81:3672–3683. doi: 10.1128/IAI.00854-13. PubMed DOI PMC

Ren S., Hui Y., Obelitz-Ryom K., Brandt A.B., Kot W., Nielsen D.S., Thymann T., Sangild P.T., Nguyen D.N. Neonatal Gut and Immune Maturation Is Determined More by Postnatal Age than by Postconceptional Age in Moderately Preterm Pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 2018;315:G855–G867. doi: 10.1152/ajpgi.00169.2018. PubMed DOI

Wrzosek L., Miquel S., Noordine M.-L., Bouet S., Joncquel Chevalier-Curt M., Robert V., Philippe C., Bridonneau C., Cherbuy C., Robbe-Masselot C., et al. Bacteroides Thetaiotaomicron and Faecalibacterium Prausnitzii Influence the Production of Mucus Glycans and the Development of Goblet Cells in the Colonic Epithelium of a Gnotobiotic Model Rodent. BMC Biol. 2013;11:61. doi: 10.1186/1741-7007-11-61. PubMed DOI PMC

Abe F., Muto M., Yaeshima T., Iwatsuki K., Aihara H., Ohashi Y., Fujisawa T. Safety Evaluation of Probiotic Bifidobacteria by Analysis of Mucin Degradation Activity and Translocation Ability. Anaerobe. 2010;16:131–136. doi: 10.1016/j.anaerobe.2009.07.006. PubMed DOI

Takeda K., Akira S. Toll-like Receptors in Innate Immunity. Int. Immunol. 2005;17:1–14. doi: 10.1093/intimm/dxh186. PubMed DOI

Seumen C.H.T., Tomasiunaite U., Legler D.F., Hauck C.R. Elimination of Negative Feedback in TLR Signalling Allows Rapid and Hypersensitive Detection of Microbial Contaminants. Sci. Rep. 2021;11:24414. doi: 10.1038/s41598-021-03618-9. PubMed DOI PMC

Takeda K., Akira S. Toll-like Receptors. Curr. Protoc. Immunol. 2015;109:14.12.1–14.12.10. doi: 10.1002/0471142735.im1412s109. PubMed DOI

Galanos C., Freudenberg M.A. Mechanisms of Endotoxin Shock and Endotoxin Hypersensitivity. Immunobiology. 1993;187:346–356. doi: 10.1016/S0171-2985(11)80349-9. PubMed DOI

Splíchal I., Trebichavský I., Splíchalová A., Barrow P.A. Protection of Gnotobiotic Pigs against Salmonella enterica Serotype Typhimurium by Rough Mutant of the Same Serotype Is Accompanied by the Change of Local and Systemic Cytokine Response. Vet. Immunol. Immunopathol. 2005;103:155–161. doi: 10.1016/j.vetimm.2004.09.001. PubMed DOI

Foster N., Lovell M.A., Marston K.L., Hulme S.D., Frost A.J., Bland P., Barrow P.A. Rapid Protection of Gnotobiotic Pigs against Experimental Salmonellosis Following Induction of Polymorphonuclear Leukocytes by Avirulent Salmonella enterica. Infect. Immun. 2003;71:2182–2191. doi: 10.1128/IAI.71.4.2182-2191.2003. PubMed DOI PMC

Foster N., Richards L., Higgins J., Kanellos T., Barrow P. Oral Vaccination with a Rough Attenuated Mutant of S. Infantis Increases Post-Wean Weight Gain and Prevents Clinical Signs of Salmonellosis in S. Typhimurium Challenged Pigs. Res. Vet. Sci. 2016;104:152–159. doi: 10.1016/j.rvsc.2015.12.013. PubMed DOI

Talbot S., Tötemeyer S., Yamamoto M., Akira S., Hughes K., Gray D., Barr T., Mastroeni P., Maskell D.J., Bryant C.E. Toll-like Receptor 4 Signalling through MyD88 Is Essential to Control Salmonella enterica Serovar Typhimurium Infection, but Not for the Initiation of Bacterial Clearance. Immunology. 2009;128:472–483. doi: 10.1111/j.1365-2567.2009.03146.x. PubMed DOI PMC

Splichal I., Donovan S.M., Jenistova V., Splichalova I., Salmonova H., Vlkova E., Neuzil Bunesova V., Sinkora M., Killer J., Skrivanova E., et al. High Mobility Group Box 1 and TLR4 Signaling Pathway in Gnotobiotic Piglets Colonized/Infected with L. amylovorus, L. mucosae, E. coli Nissle 1917 and S. typhimurium. Int. J. Mol. Sci. 2019;20:6294. doi: 10.3390/ijms20246294. PubMed DOI PMC

Commins S.P., Borish L., Steinke J.W. Immunologic Messenger Molecules: Cytokines, Interferons, and Chemokines. J. Allergy Clin. Immunol. 2010;125:S53–S72. doi: 10.1016/j.jaci.2009.07.008. PubMed DOI

Trebichavský I., Tlaskalová H., Cukrowska B., Splíchal I., Sinkora J., Oeháková Z., Sinkora M., Pospísil R., Kováøù F., Charley B., et al. Early Ontogeny of Immune Cells and Their Functions in the Fetal Pig. Vet. Immunol. Immunopathol. 1996;54:75–81. doi: 10.1016/S0165-2427(96)05707-8. PubMed DOI

Reháková Z., Trebichavský I., Sinkora J., Splíchal I., Sinkora M. Early Ontogeny of Monocytes and Macrophages in the Pig. Physiol. Res. 1998;47:357–363. PubMed

Karki R., Kanneganti T.-D. The “Cytokine Storm”: Molecular Mechanisms and Therapeutic Prospects. Trends Immunol. 2021;42:681–705. doi: 10.1016/j.it.2021.06.001. PubMed DOI PMC

Mehta S., Gill S.E. Improving Clinical Outcomes in Sepsis and Multiple Organ Dysfunction through Precision Medicine. J. Thorac. Dis. 2019;11:21–28. doi: 10.21037/jtd.2018.11.74. PubMed DOI PMC

Barichello T., Generoso J.S., Singer M., Dal-Pizzol F. Biomarkers for Sepsis: More than Just Fever and Leukocytosis-a Narrative Review. Crit. Care. 2022;26:14. doi: 10.1186/s13054-021-03862-5. PubMed DOI PMC

Splichal I., Splichalova A. Experimental Enteric Bacterial Infections in Pigs. J. Infect. Dis. 2018;218:504–505. doi: 10.1093/infdis/jiy185. PubMed DOI

Revello R., Alcaide M.J., Dudzik D., Abehsera D., Bartha J.L. Differential Amniotic Fluid Cytokine Profile in Women with Chorioamnionitis with and without Funisitis. J. Matern.-Fetal Neonatal Med. 2016;29:2161–2165. doi: 10.3109/14767058.2015.1077512. PubMed DOI

Weissenbacher T., Laubender R.P., Witkin S.S., Gingelmaier A., Schiessl B., Kainer F., Friese K., Jeschke U., Dian D., Karl K. Diagnostic Biomarkers of Pro-Inflammatory Immune-Mediated Preterm Birth. Arch. Gynecol. Obstet. 2013;287:673–685. doi: 10.1007/s00404-012-2629-3. PubMed DOI

Gude S.S., Peddi N.C., Vuppalapati S., Venu Gopal S., Marasandra Ramesh H., Gude S.S. Biomarkers of Neonatal Sepsis: From Being Mere Numbers to Becoming Guiding Diagnostics. Cureus. 2022;14:e23215. doi: 10.7759/cureus.23215. PubMed DOI PMC

Hunter C.A., Jones S.A. IL-6 as a Keystone Cytokine in Health and Disease. Nat. Immunol. 2015;16:448–457. doi: 10.1038/ni.3153. PubMed DOI

Castellheim A., Thorgersen E.B., Hellerud B.C., Pharo A., Johansen H.T., Brosstad F., Gaustad P., Brun H., Fosse E., Tønnessen T.I., et al. New Biomarkers in an Acute Model of Live Escherichia Coli-Induced Sepsis in Pigs. Scand. J. Immunol. 2008;68:75–84. doi: 10.1111/j.1365-3083.2008.02122.x. PubMed DOI

Nakano N., Nishiyama C., Kanada S., Niwa Y., Shimokawa N., Ushio H., Nishiyama M., Okumura K., Ogawa H. Involvement of Mast Cells in IL-12/23 P40 Production Is Essential for Survival from Polymicrobial Infections. Blood. 2007;109:4846–4855. doi: 10.1182/blood-2006-09-045641. PubMed DOI

Zamora R., Grishin A., Wong C., Boyle P., Wang J., Hackam D., Upperman J.S., Tracey K.J., Ford H.R. High-Mobility Group Box 1 Protein Is an Inflammatory Mediator in Necrotizing Enterocolitis: Protective Effect of the Macrophage Deactivator Semapimod. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;289:G643–G652. doi: 10.1152/ajpgi.00067.2005. PubMed DOI

Splichalova A., Splichal I., Chmelarova P., Trebichavsky I. Alarmin HMGB1 Is Released in the Small Intestine of Gnotobiotic Piglets Infected with Enteric Pathogens and Its Level in Plasma Reflects Severity of Sepsis. J. Clin. Immunol. 2011;31:488–497. doi: 10.1007/s10875-010-9505-3. PubMed DOI

Splichalova A., Splichal I. Local and Systemic Occurrences of HMGB1 in Gnotobiotic Piglets Infected with E. coli O55 Are Related to Bacterial Translocation and Inflammatory Cytokines. Cytokine. 2012;60:597–600. doi: 10.1016/j.cyto.2012.07.026. PubMed DOI

Fajgenbaum D.C., June C.H. Cytokine Storm. N. Engl. J. Med. 2020;383:2255–2273. doi: 10.1056/NEJMra2026131. PubMed DOI PMC

Wei Y., Yang J., Wang J., Yang Y., Huang J., Gong H., Cui H., Chen D. Successful Treatment with Fecal Microbiota Transplantation in Patients with Multiple Organ Dysfunction Syndrome and Diarrhea Following Severe Sepsis. Crit. Care. 2016;20:332. doi: 10.1186/s13054-016-1491-2. PubMed DOI PMC

Splichal I., Splichalova A. High Mobility Group Box 1 in Pig Amniotic Membrane Experimentally Infected with E. coli O55. Biomolecules. 2021;11:1146. doi: 10.3390/biom11081146. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...