Release of HMGB1 and Toll-like Receptors 2, 4, and 9 Signaling Are Modulated by Bifidobacterium animalis subsp. lactis BB-12 and Salmonella Typhimurium in a Gnotobiotic Piglet Model of Preterm Infants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
13-14736S
Czech Science Foundation
20-03282S
Czech Science Foundation
PubMed
36768650
PubMed Central
PMC9916534
DOI
10.3390/ijms24032329
PII: ijms24032329
Knihovny.cz E-zdroje
- Klíčová slova
- Bifidobacterium animalis subsp. lactis BB-12, Salmonella Typhimurium, Toll-like receptors, high mobility group box 1, immunodeficient host, inflammatory cytokines, intestinal barrier, mucin, tight junction proteins,
- MeSH
- Bifidobacterium animalis * MeSH
- gnotobiologické modely MeSH
- lidé MeSH
- novorozenec nedonošený MeSH
- novorozenec MeSH
- prasata MeSH
- probiotika * farmakologie MeSH
- protein HMGB1 * MeSH
- Salmonella typhimurium MeSH
- toll-like receptory metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protein HMGB1 * MeSH
- toll-like receptory MeSH
Gnotobiotic (GN) animals with defined microbiota allow us to study host-microbiota and microbiota-microbiota interferences. Preterm germ-free (GF) piglets were mono-associated with probiotic Bifidobacterium animalis subsp. lactis BB-12 (BB12) to ameliorate/prevent the consequences of infection with the Salmonella Typhimurium strain LT2 (LT2). Goblet cell density; expression of Toll-like receptors (TLRs) 2, 4, and 9; high mobility group box 1 (HMGB1); interleukin (IL)-6; and IL-12/23p40 were analyzed to evaluate the possible modulatory effect of BB12. BB12 prevented an LT2-induced decrease of goblet cell density in the colon. TLRs signaling modified by LT2 was not influenced by the previous association with BB12. The expression of HMGB1, IL-6, and IL12/23p40 in the jejunum, ileum, and colon and their levels in plasma were all decreased by BB12, but these changes were not statistically significant. In the colon, differences in HMGB1 distribution between the GF and LT2 piglet groups were observed. In conclusion, the mono-association of GF piglets with BB12 prior to LT2 infection partially ameliorated the inflammatory response to LT2 infection.
Department of Food Science and Human Nutrition University of Illinois Urbana IL 61801 USA
Department of Neonatology Institute for the Care of Mother and Child 147 00 Prague Czech Republic
Zobrazit více v PubMed
Walani S.R. Global Burden of Preterm Birth. Int. J. Gynaecol. Obstet. 2020;150:31–33. doi: 10.1002/ijgo.13195. PubMed DOI
Humberg A., Fortmann I., Siller B., Kopp M.V., Herting E., Göpel W., Härtel C. German Neonatal Network, German Center for Lung Research and Priming Immunity at the beginning of life (PRIMAL) Consortium Preterm Birth and Sustained Inflammation: Consequences for the Neonate. Semin. Immunopathol. 2020;42:451–468. doi: 10.1007/s00281-020-00803-2. PubMed DOI PMC
Goldstein R.F., Malcolm W.F. Care of the Neonatal Intensive Care Unit Graduate after Discharge. Pediatr. Clin. North Am. 2019;66:489–508. doi: 10.1016/j.pcl.2018.12.014. PubMed DOI
Da Fonseca E.B., Damião R., Moreira D.A. Preterm Birth Prevention. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:40–49. doi: 10.1016/j.bpobgyn.2020.09.003. PubMed DOI
Rutayisire E., Huang K., Liu Y., Tao F. The Mode of Delivery Affects the Diversity and Colonization Pattern of the Gut Microbiota during the First Year of Infants’ Life: A Systematic Review. BMC Gastroenterol. 2016;16:86. doi: 10.1186/s12876-016-0498-0. PubMed DOI PMC
Wang J., Dominguez-Bello M.G. Microbial Colonization Alters Neonatal Gut Metabolome. Nat. Microbiol. 2020;5:785–786. doi: 10.1038/s41564-020-0734-9. PubMed DOI
Nagpal R., Kurakawa T., Tsuji H., Takahashi T., Kawashima K., Nagata S., Nomoto K., Yamashiro Y. Evolution of Gut Bifidobacterium Population in Healthy Japanese Infants over the First Three Years of Life: A Quantitative Assessment. Sci. Rep. 2017;7:10097. doi: 10.1038/s41598-017-10711-5. PubMed DOI PMC
Akagawa S., Tsuji S., Onuma C., Akagawa Y., Yamaguchi T., Yamagishi M., Yamanouchi S., Kimata T., Sekiya S.-I., Ohashi A., et al. Effect of Delivery Mode and Nutrition on Gut Microbiota in Neonates. Ann. Nutr. Metab. 2019;74:132–139. doi: 10.1159/000496427. PubMed DOI
Brooks B., Firek B.A., Miller C.S., Sharon I., Thomas B.C., Baker R., Morowitz M.J., Banfield J.F. Microbes in the Neonatal Intensive Care Unit Resemble Those Found in the Gut of Premature Infants. Microbiome. 2014;2:1. doi: 10.1186/2049-2618-2-1. PubMed DOI PMC
Mueller N.T., Differding M.K., Østbye T., Hoyo C., Benjamin-Neelon S.E. Association of Birth Mode of Delivery with Infant Faecal Microbiota, Potential Pathobionts, and Short Chain Fatty Acids: A Longitudinal Study over the First Year of Life. BJOG. 2021;128:1293–1303. doi: 10.1111/1471-0528.16633. PubMed DOI PMC
Fan Y., Pedersen O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021;19:55–71. doi: 10.1038/s41579-020-0433-9. PubMed DOI
Donovan S.M. Evolution of the Gut Microbiome in Infancy within an Ecological Context. Curr. Opin. Clin. Nutr. Metab. Care. 2020;23:223–227. doi: 10.1097/MCO.0000000000000650. PubMed DOI PMC
Kawai T., Akira S. Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006. PubMed DOI
Gensollen T., Iyer S.S., Kasper D.L., Blumberg R.S. How Colonization by Microbiota in Early Life Shapes the Immune System. Science. 2016;352:539–544. doi: 10.1126/science.aad9378. PubMed DOI PMC
Gong T., Liu L., Jiang W., Zhou R. DAMP-Sensing Receptors in Sterile Inflammation and Inflammatory Diseases. Nat. Rev. Immunol. 2020;20:95–112. doi: 10.1038/s41577-019-0215-7. PubMed DOI
Meizlish M.L., Franklin R.A., Zhou X., Medzhitov R. Tissue Homeostasis and Inflammation. Annu. Rev. Immunol. 2021;39:557–581. doi: 10.1146/annurev-immunol-061020-053734. PubMed DOI
Bianchi M.E., Crippa M.P., Manfredi A.A., Mezzapelle R., Rovere Querini P., Venereau E. High-Mobility Group Box 1 Protein Orchestrates Responses to Tissue Damage via Inflammation, Innate and Adaptive Immunity, and Tissue Repair. Immunol. Rev. 2017;280:74–82. doi: 10.1111/imr.12601. PubMed DOI
Paudel Y.N., Angelopoulou E., Piperi C., Balasubramaniam V.R.M.T., Othman I., Shaikh M.F. Enlightening the Role of High Mobility Group Box 1 (HMGB1) in Inflammation: Updates on Receptor Signalling. Eur. J. Pharmacol. 2019;858:172487. doi: 10.1016/j.ejphar.2019.172487. PubMed DOI
Van Best N., Trepels-Kottek S., Savelkoul P., Orlikowsky T., Hornef M.W., Penders J. Influence of Probiotic Supplementation on the Developing Microbiota in Human Preterm Neonates. Gut Microbes. 2020;12:1826747. doi: 10.1080/19490976.2020.1826747. PubMed DOI PMC
Samara J., Moossavi S., Alshaikh B., Ortega V.A., Pettersen V.K., Ferdous T., Hoops S.L., Soraisham A., Vayalumkal J., Dersch-Mills D., et al. Supplementation with a Probiotic Mixture Accelerates Gut Microbiome Maturation and Reduces Intestinal Inflammation in Extremely Preterm Infants. Cell Host Microbe. 2022;30:696–711.e5. doi: 10.1016/j.chom.2022.04.005. PubMed DOI
Plummer E.L., Danielewski J.A., Garland S.M., Su J., Jacobs S.E., Murray G.L. The Effect of Probiotic Supplementation on the Gut Microbiota of Preterm Infants. J. Med. Microbiol. 2021;70:001403. doi: 10.1099/jmm.0.001403. PubMed DOI PMC
Lee E.-S., Song E.-J., Nam Y.-D., Lee S.-Y. Probiotics in Human Health and Disease: From Nutribiotics to Pharmabiotics. J. Microbiol. 2018;56:773–782. doi: 10.1007/s12275-018-8293-y. PubMed DOI
O’Brien C.E., Meier A.K., Cernioglo K., Mitchell R.D., Casaburi G., Frese S.A., Henrick B.M., Underwood M.A., Smilowitz J.T. Early Probiotic Supplementation with B. Infantis in Breastfed Infants Leads to Persistent Colonization at 1 Year. Pediatr. Res. 2022;91:627–636. doi: 10.1038/s41390-020-01350-0. PubMed DOI PMC
Ducarmon Q.R., Zwittink R.D., Hornung B.V.H., van Schaik W., Young V.B., Kuijper E.J. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev. 2019;83:e00007-19. doi: 10.1128/MMBR.00007-19. PubMed DOI PMC
Jungersen M., Wind A., Johansen E., Christensen J.E., Stuer-Lauridsen B., Eskesen D. The Science behind the Probiotic Strain Bifidobacterium Animalis Subsp. Lactis BB-12(®) Microorganisms. 2014;2:92–110. doi: 10.3390/microorganisms2020092. PubMed DOI PMC
Pang J., Wang S., Wang Z., Wu Y., Zhang X., Pi Y., Han D., Zhang S., Wang J. Xylo-Oligosaccharide Alleviates Salmonella Induced Inflammation by Stimulating Bifidobacterium Animalis and Inhibiting Salmonella Colonization. FASEB J. 2021;35:e21977. doi: 10.1096/fj.202100919RR. PubMed DOI
Ruff W.E., Greiling T.M., Kriegel M.A. Host-Microbiota Interactions in Immune-Mediated Diseases. Nat. Rev. Microbiol. 2020;18:521–538. doi: 10.1038/s41579-020-0367-2. PubMed DOI
Thaiss C.A., Zmora N., Levy M., Elinav E. The Microbiome and Innate Immunity. Nature. 2016;535:65–74. doi: 10.1038/nature18847. PubMed DOI
Splichalova A., Slavikova V., Splichalova Z., Splichal I. Preterm Life in Sterile Conditions: A Study on Preterm, Germ-Free Piglets. Front. Immunol. 2018;9:220. doi: 10.3389/fimmu.2018.00220. PubMed DOI PMC
Sampah M.E.S., Hackam D.J. Dysregulated Mucosal Immunity and Associated Pathogeneses in Preterm Neonates. Front. Immunol. 2020;11:899. doi: 10.3389/fimmu.2020.00899. PubMed DOI PMC
Kulkarni T., Majarikar S., Deshmukh M., Ananthan A., Balasubramanian H., Keil A., Patole S. Probiotic Sepsis in Preterm Neonates-a Systematic Review. Eur. J. Pediatr. 2022;181:2249–2262. doi: 10.1007/s00431-022-04452-5. PubMed DOI
Wikler D. Must Research Benefit Human Subjects If It Is to Be Permissible? J. Med. Ethics. 2017;43:114–117. doi: 10.1136/medethics-2015-103123. PubMed DOI PMC
Duval K., Grover H., Han L.-H., Mou Y., Pegoraro A.F., Fredberg J., Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology. 2017;32:266–277. doi: 10.1152/physiol.00036.2016. PubMed DOI PMC
Kovler M.L., Sodhi C.P., Hackam D.J. Precision-Based Modeling Approaches for Necrotizing Enterocolitis. Dis. Model. Mech. 2020;13:dmm044388. doi: 10.1242/dmm.044388. PubMed DOI PMC
Rutai A., Zsikai B., Tallósy S.P., Érces D., Bizánc L., Juhász L., Poles M.Z., Sóki J., Baaity Z., Fejes R., et al. A Porcine Sepsis Model with Numerical Scoring for Early Prediction of Severity. Front. Med. 2022;9:867796. doi: 10.3389/fmed.2022.867796. PubMed DOI PMC
Sangild P.T., Siggers R.H., Schmidt M., Elnif J., Bjornvad C.R., Thymann T., Grondahl M.L., Hansen A.K., Jensen S.K., Boye M., et al. Diet- and Colonization-Dependent Intestinal Dysfunction Predisposes to Necrotizing Enterocolitis in Preterm Pigs. Gastroenterology. 2006;130:1776–1792. doi: 10.1053/j.gastro.2006.02.026. PubMed DOI
Nolan L.S., Wynn J.L., Good M. Exploring Clinically-Relevant Experimental Models of Neonatal Shock and Necrotizing Enterocolitis. Shock. 2020;53:596–604. doi: 10.1097/SHK.0000000000001507. PubMed DOI PMC
Lunney J.K., Van Goor A., Walker K.E., Hailstock T., Franklin J., Dai C. Importance of the Pig as a Human Biomedical Model. Sci. Transl. Med. 2021;13:eabd5758. doi: 10.1126/scitranslmed.abd5758. PubMed DOI
Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC
Xiao L., Estellé J., Kiilerich P., Ramayo-Caldas Y., Xia Z., Feng Q., Liang S., Pedersen A.Ø., Kjeldsen N.J., Liu C., et al. A Reference Gene Catalogue of the Pig Gut Microbiome. Nat. Microbiol. 2016;1:16161. doi: 10.1038/nmicrobiol.2016.161. PubMed DOI
Burrin D., Sangild P.T., Stoll B., Thymann T., Buddington R., Marini J., Olutoye O., Shulman R.J. Translational Advances in Pediatric Nutrition and Gastroenterology: New Insights from Pig Models. Annu. Rev. Anim. Biosci. 2020;8:321–354. doi: 10.1146/annurev-animal-020518-115142. PubMed DOI
Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. The Pig: A Model for Human Infectious Diseases. Trends Microbiol. 2012;20:50–57. doi: 10.1016/j.tim.2011.11.002. PubMed DOI PMC
Lu T., Yang B., Wang R., Qin C. Xenotransplantation: Current Status in Preclinical Research. Front. Immunol. 2019;10:3060. doi: 10.3389/fimmu.2019.03060. PubMed DOI PMC
Bæk O., Ren S., Brunse A., Sangild P.T., Nguyen D.N. Impaired Neonatal Immunity and Infection Resistance Following Fetal Growth Restriction in Preterm Pigs. Front. Immunol. 2020;11:1808. doi: 10.3389/fimmu.2020.01808. PubMed DOI PMC
Nguyen D.N., Jiang P., Frøkiær H., Heegaard P.M.H., Thymann T., Sangild P.T. Delayed Development of Systemic Immunity in Preterm Pigs as a Model for Preterm Infants. Sci. Rep. 2016;6:36816. doi: 10.1038/srep36816. PubMed DOI PMC
Splichalova A., Donovan S.M., Tlaskalova-Hogenova H., Stranak Z., Splichalova Z., Splichal I. Monoassociation of Preterm Germ-Free Piglets with Bifidobacterium Animalis Subsp. Lactis BB-12 and Its Impact on Infection with Salmonella typhimurium. Biomedicines. 2021;9:183. doi: 10.3390/biomedicines9020183. PubMed DOI PMC
Splichalova A., Splichalova Z., Karasova D., Rychlik I., Trevisi P., Sinkora M., Splichal I. Impact of the Lipopolysaccharide Chemotype of Salmonella enterica Serovar Typhimurium on Virulence in Gnotobiotic Piglets. Toxins. 2019;11:534. doi: 10.3390/toxins11090534. PubMed DOI PMC
Tlaskalova-Hogenova H., Mandel L., Trebichavsky I., Kovaru F., Barot R., Sterzl J. Development of Immune Responses in Early Pig Ontogeny. Vet. Immunol. Immunopathol. 1994;43:135–142. doi: 10.1016/0165-2427(94)90129-5. PubMed DOI
Cukrowska B., Kozáková H., Reháková Z., Sinkora J., Tlaskalová-Hogenová H. Specific Antibody and Immunoglobulin Responses after Intestinal Colonization of Germ-Free Piglets with Non-Pathogenic Escherichia Coli O86. Immunobiology. 2001;204:425–433. doi: 10.1078/0171-2985-00052. PubMed DOI
Zamora I.J., Stoll B., Ethun C.G., Sheikh F., Yu L., Burrin D.G., Brandt M.L., Olutoye O.O. Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis. PLoS ONE. 2015;10:e0125437. doi: 10.1371/journal.pone.0125437. PubMed DOI PMC
Azcarate-Peril M.A., Foster D.M., Cadenas M.B., Stone M.R., Jacobi S.K., Stauffer S.H., Pease A., Gookin J.L. Acute Necrotizing Enterocolitis of Preterm Piglets Is Characterized by Dysbiosis of Ileal Mucosa-Associated Bacteria. Gut Microbes. 2011;2:234–243. doi: 10.4161/gmic.2.4.16332. PubMed DOI PMC
Clarke R.C., Gyles C.L. Virulence of Wild and Mutant Strains of Salmonella typhimurium in Ligated Intestinal Segments of Calves, Pigs, and Rabbits. Am. J. Vet. Res. 1987;48:504–510. PubMed
Splichal I., Rychlik I., Splichalova I., Karasova D., Splichalova A. Toll-Like Receptor 4 Signaling in the Ileum and Colon of Gnotobiotic Piglets Infected with Salmonella typhimurium or Its Isogenic ∆rfa Mutants. Toxins. 2020;12:545. doi: 10.3390/toxins12090545. PubMed DOI PMC
Salmon H., Berri M., Gerdts V., Meurens F. Humoral and Cellular Factors of Maternal Immunity in Swine. Dev. Comp. Immunol. 2009;33:384–393. doi: 10.1016/j.dci.2008.07.007. PubMed DOI
Mair K.H., Sedlak C., Käser T., Pasternak A., Levast B., Gerner W., Saalmüller A., Summerfield A., Gerdts V., Wilson H.L., et al. The Porcine Innate Immune System: An Update. Dev. Comp. Immunol. 2014;45:321–343. doi: 10.1016/j.dci.2014.03.022. PubMed DOI PMC
Masi A.C., Stewart C.J. The Role of the Preterm Intestinal Microbiome in Sepsis and Necrotising Enterocolitis. Early Hum. Dev. 2019;138:104854. doi: 10.1016/j.earlhumdev.2019.104854. PubMed DOI
Hong C.R., Han S.M., Jaksic T. Surgical Considerations for Neonates with Necrotizing Enterocolitis. Semin. Fetal Neonatal Med. 2018;23:420–425. doi: 10.1016/j.siny.2018.08.007. PubMed DOI
Allaire J.M., Crowley S.M., Law H.T., Chang S.-Y., Ko H.-J., Vallance B.A. The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends Immunol. 2018;39:677–696. doi: 10.1016/j.it.2018.04.002. PubMed DOI
Linden S.K., Sutton P., Karlsson N.G., Korolik V., McGuckin M.A. Mucins in the Mucosal Barrier to Infection. Mucosal Immunol. 2008;1:183–197. doi: 10.1038/mi.2008.5. PubMed DOI PMC
Johansson M.E.V., Phillipson M., Petersson J., Velcich A., Holm L., Hansson G.C. The Inner of the Two Muc2 Mucin-Dependent Mucus Layers in Colon Is Devoid of Bacteria. Proc. Natl. Acad. Sci. USA. 2008;105:15064–15069. doi: 10.1073/pnas.0803124105. PubMed DOI PMC
Splichalova A., Pechar R., Killer J., Splichalova Z., Bunesova V.N., Vlkova E., Salmonova H.S., Splichal I. Colonization of Germ-Free Piglets with Mucinolytic and Non-Mucinolytic Bifidobacterium Boum Strains Isolated from the Intestine of Wild Boar and Their Interference with Salmonella typhimurium. Microorganisms. 2020;8:2002. doi: 10.3390/microorganisms8122002. PubMed DOI PMC
Puiman P.J., Jensen M., Stoll B., Renes I.B., de Bruijn A.C.J.M., Dorst K., Schierbeek H., Schmidt M., Boehm G., Burrin D.G., et al. Intestinal Threonine Utilization for Protein and Mucin Synthesis Is Decreased in Formula-Fed Preterm Pigs. J. Nutr. 2011;141:1306–1311. doi: 10.3945/jn.110.135145. PubMed DOI
Zarepour M., Bhullar K., Montero M., Ma C., Huang T., Velcich A., Xia L., Vallance B.A. The Mucin Muc2 Limits Pathogen Burdens and Epithelial Barrier Dysfunction during Salmonella enterica Serovar Typhimurium Colitis. Infect. Immun. 2013;81:3672–3683. doi: 10.1128/IAI.00854-13. PubMed DOI PMC
Ren S., Hui Y., Obelitz-Ryom K., Brandt A.B., Kot W., Nielsen D.S., Thymann T., Sangild P.T., Nguyen D.N. Neonatal Gut and Immune Maturation Is Determined More by Postnatal Age than by Postconceptional Age in Moderately Preterm Pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 2018;315:G855–G867. doi: 10.1152/ajpgi.00169.2018. PubMed DOI
Wrzosek L., Miquel S., Noordine M.-L., Bouet S., Joncquel Chevalier-Curt M., Robert V., Philippe C., Bridonneau C., Cherbuy C., Robbe-Masselot C., et al. Bacteroides Thetaiotaomicron and Faecalibacterium Prausnitzii Influence the Production of Mucus Glycans and the Development of Goblet Cells in the Colonic Epithelium of a Gnotobiotic Model Rodent. BMC Biol. 2013;11:61. doi: 10.1186/1741-7007-11-61. PubMed DOI PMC
Abe F., Muto M., Yaeshima T., Iwatsuki K., Aihara H., Ohashi Y., Fujisawa T. Safety Evaluation of Probiotic Bifidobacteria by Analysis of Mucin Degradation Activity and Translocation Ability. Anaerobe. 2010;16:131–136. doi: 10.1016/j.anaerobe.2009.07.006. PubMed DOI
Takeda K., Akira S. Toll-like Receptors in Innate Immunity. Int. Immunol. 2005;17:1–14. doi: 10.1093/intimm/dxh186. PubMed DOI
Seumen C.H.T., Tomasiunaite U., Legler D.F., Hauck C.R. Elimination of Negative Feedback in TLR Signalling Allows Rapid and Hypersensitive Detection of Microbial Contaminants. Sci. Rep. 2021;11:24414. doi: 10.1038/s41598-021-03618-9. PubMed DOI PMC
Takeda K., Akira S. Toll-like Receptors. Curr. Protoc. Immunol. 2015;109:14.12.1–14.12.10. doi: 10.1002/0471142735.im1412s109. PubMed DOI
Galanos C., Freudenberg M.A. Mechanisms of Endotoxin Shock and Endotoxin Hypersensitivity. Immunobiology. 1993;187:346–356. doi: 10.1016/S0171-2985(11)80349-9. PubMed DOI
Splíchal I., Trebichavský I., Splíchalová A., Barrow P.A. Protection of Gnotobiotic Pigs against Salmonella enterica Serotype Typhimurium by Rough Mutant of the Same Serotype Is Accompanied by the Change of Local and Systemic Cytokine Response. Vet. Immunol. Immunopathol. 2005;103:155–161. doi: 10.1016/j.vetimm.2004.09.001. PubMed DOI
Foster N., Lovell M.A., Marston K.L., Hulme S.D., Frost A.J., Bland P., Barrow P.A. Rapid Protection of Gnotobiotic Pigs against Experimental Salmonellosis Following Induction of Polymorphonuclear Leukocytes by Avirulent Salmonella enterica. Infect. Immun. 2003;71:2182–2191. doi: 10.1128/IAI.71.4.2182-2191.2003. PubMed DOI PMC
Foster N., Richards L., Higgins J., Kanellos T., Barrow P. Oral Vaccination with a Rough Attenuated Mutant of S. Infantis Increases Post-Wean Weight Gain and Prevents Clinical Signs of Salmonellosis in S. Typhimurium Challenged Pigs. Res. Vet. Sci. 2016;104:152–159. doi: 10.1016/j.rvsc.2015.12.013. PubMed DOI
Talbot S., Tötemeyer S., Yamamoto M., Akira S., Hughes K., Gray D., Barr T., Mastroeni P., Maskell D.J., Bryant C.E. Toll-like Receptor 4 Signalling through MyD88 Is Essential to Control Salmonella enterica Serovar Typhimurium Infection, but Not for the Initiation of Bacterial Clearance. Immunology. 2009;128:472–483. doi: 10.1111/j.1365-2567.2009.03146.x. PubMed DOI PMC
Splichal I., Donovan S.M., Jenistova V., Splichalova I., Salmonova H., Vlkova E., Neuzil Bunesova V., Sinkora M., Killer J., Skrivanova E., et al. High Mobility Group Box 1 and TLR4 Signaling Pathway in Gnotobiotic Piglets Colonized/Infected with L. amylovorus, L. mucosae, E. coli Nissle 1917 and S. typhimurium. Int. J. Mol. Sci. 2019;20:6294. doi: 10.3390/ijms20246294. PubMed DOI PMC
Commins S.P., Borish L., Steinke J.W. Immunologic Messenger Molecules: Cytokines, Interferons, and Chemokines. J. Allergy Clin. Immunol. 2010;125:S53–S72. doi: 10.1016/j.jaci.2009.07.008. PubMed DOI
Trebichavský I., Tlaskalová H., Cukrowska B., Splíchal I., Sinkora J., Oeháková Z., Sinkora M., Pospísil R., Kováøù F., Charley B., et al. Early Ontogeny of Immune Cells and Their Functions in the Fetal Pig. Vet. Immunol. Immunopathol. 1996;54:75–81. doi: 10.1016/S0165-2427(96)05707-8. PubMed DOI
Reháková Z., Trebichavský I., Sinkora J., Splíchal I., Sinkora M. Early Ontogeny of Monocytes and Macrophages in the Pig. Physiol. Res. 1998;47:357–363. PubMed
Karki R., Kanneganti T.-D. The “Cytokine Storm”: Molecular Mechanisms and Therapeutic Prospects. Trends Immunol. 2021;42:681–705. doi: 10.1016/j.it.2021.06.001. PubMed DOI PMC
Mehta S., Gill S.E. Improving Clinical Outcomes in Sepsis and Multiple Organ Dysfunction through Precision Medicine. J. Thorac. Dis. 2019;11:21–28. doi: 10.21037/jtd.2018.11.74. PubMed DOI PMC
Barichello T., Generoso J.S., Singer M., Dal-Pizzol F. Biomarkers for Sepsis: More than Just Fever and Leukocytosis-a Narrative Review. Crit. Care. 2022;26:14. doi: 10.1186/s13054-021-03862-5. PubMed DOI PMC
Splichal I., Splichalova A. Experimental Enteric Bacterial Infections in Pigs. J. Infect. Dis. 2018;218:504–505. doi: 10.1093/infdis/jiy185. PubMed DOI
Revello R., Alcaide M.J., Dudzik D., Abehsera D., Bartha J.L. Differential Amniotic Fluid Cytokine Profile in Women with Chorioamnionitis with and without Funisitis. J. Matern.-Fetal Neonatal Med. 2016;29:2161–2165. doi: 10.3109/14767058.2015.1077512. PubMed DOI
Weissenbacher T., Laubender R.P., Witkin S.S., Gingelmaier A., Schiessl B., Kainer F., Friese K., Jeschke U., Dian D., Karl K. Diagnostic Biomarkers of Pro-Inflammatory Immune-Mediated Preterm Birth. Arch. Gynecol. Obstet. 2013;287:673–685. doi: 10.1007/s00404-012-2629-3. PubMed DOI
Gude S.S., Peddi N.C., Vuppalapati S., Venu Gopal S., Marasandra Ramesh H., Gude S.S. Biomarkers of Neonatal Sepsis: From Being Mere Numbers to Becoming Guiding Diagnostics. Cureus. 2022;14:e23215. doi: 10.7759/cureus.23215. PubMed DOI PMC
Hunter C.A., Jones S.A. IL-6 as a Keystone Cytokine in Health and Disease. Nat. Immunol. 2015;16:448–457. doi: 10.1038/ni.3153. PubMed DOI
Castellheim A., Thorgersen E.B., Hellerud B.C., Pharo A., Johansen H.T., Brosstad F., Gaustad P., Brun H., Fosse E., Tønnessen T.I., et al. New Biomarkers in an Acute Model of Live Escherichia Coli-Induced Sepsis in Pigs. Scand. J. Immunol. 2008;68:75–84. doi: 10.1111/j.1365-3083.2008.02122.x. PubMed DOI
Nakano N., Nishiyama C., Kanada S., Niwa Y., Shimokawa N., Ushio H., Nishiyama M., Okumura K., Ogawa H. Involvement of Mast Cells in IL-12/23 P40 Production Is Essential for Survival from Polymicrobial Infections. Blood. 2007;109:4846–4855. doi: 10.1182/blood-2006-09-045641. PubMed DOI
Zamora R., Grishin A., Wong C., Boyle P., Wang J., Hackam D., Upperman J.S., Tracey K.J., Ford H.R. High-Mobility Group Box 1 Protein Is an Inflammatory Mediator in Necrotizing Enterocolitis: Protective Effect of the Macrophage Deactivator Semapimod. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;289:G643–G652. doi: 10.1152/ajpgi.00067.2005. PubMed DOI
Splichalova A., Splichal I., Chmelarova P., Trebichavsky I. Alarmin HMGB1 Is Released in the Small Intestine of Gnotobiotic Piglets Infected with Enteric Pathogens and Its Level in Plasma Reflects Severity of Sepsis. J. Clin. Immunol. 2011;31:488–497. doi: 10.1007/s10875-010-9505-3. PubMed DOI
Splichalova A., Splichal I. Local and Systemic Occurrences of HMGB1 in Gnotobiotic Piglets Infected with E. coli O55 Are Related to Bacterial Translocation and Inflammatory Cytokines. Cytokine. 2012;60:597–600. doi: 10.1016/j.cyto.2012.07.026. PubMed DOI
Fajgenbaum D.C., June C.H. Cytokine Storm. N. Engl. J. Med. 2020;383:2255–2273. doi: 10.1056/NEJMra2026131. PubMed DOI PMC
Wei Y., Yang J., Wang J., Yang Y., Huang J., Gong H., Cui H., Chen D. Successful Treatment with Fecal Microbiota Transplantation in Patients with Multiple Organ Dysfunction Syndrome and Diarrhea Following Severe Sepsis. Crit. Care. 2016;20:332. doi: 10.1186/s13054-016-1491-2. PubMed DOI PMC
Splichal I., Splichalova A. High Mobility Group Box 1 in Pig Amniotic Membrane Experimentally Infected with E. coli O55. Biomolecules. 2021;11:1146. doi: 10.3390/biom11081146. PubMed DOI PMC