Colonization of Germ-Free Piglets with Mucinolytic and Non-Mucinolytic Bifidobacterium boum Strains Isolated from the Intestine of Wild Boar and Their Interference with Salmonella Typhimurium
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
13-08803S
Grantová Agentura České Republiky
RVO 61388971
Institute of Microbiology of the Czech Academy of Sciences
Project NutRisk Centre, No. CZ.02.1.01/0.0/0.0/16_019/0000845
European Regional Development Fund
PubMed
33333934
PubMed Central
PMC7765441
DOI
10.3390/microorganisms8122002
PII: microorganisms8122002
Knihovny.cz E-zdroje
- Klíčová slova
- Bifidobacterium boum, Salmonella Typhimurium, germ-free, gnotobiotic, goblet cells, mucin, mucinolytic, piglet,
- Publikační typ
- časopisecké články MeSH
Non-typhoidal Salmonella serovars are worldwide spread foodborne pathogens that cause diarrhea in humans and animals. Colonization of gnotobiotic piglet intestine with porcine indigenous mucinolytic Bifidobacterium boum RP36 strain and non-mucinolytic strain RP37 and their interference with Salmonella Typhimurium infection were compared. Bacterial interferences and impact on the host were evaluated by clinical signs of salmonellosis, bacterial translocation, goblet cell count, mRNA expression of mucin 2, villin, claudin-1, claudin-2, and occludin in the ileum and colon, and plasmatic levels of inflammatory cytokines IL-8, TNF-α, and IL-10. Both bifidobacterial strains colonized the intestine comparably. Neither RP36 nor RP37 B. boum strains effectively suppressed signs of salmonellosis. Both B. boum strains suppressed the growth of S. Typhimurium in the ileum and colon. The mucinolytic RP36 strain increased the translocation of S. Typhimurium into the blood, liver, and spleen.
Department of Research Food Research Institute Prague 102 00 Prague Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Sciences 142 20 Prague Czech Republic
Zobrazit více v PubMed
Sommer F., Backhed F. The gut microbiota—Masters of host development and physiology. Nat. Rev. Microbiol. 2013;11:227–238. doi: 10.1038/nrmicro2974. PubMed DOI
Scarpellini E., Ianiro G., Attili F., Bassanelli C., De S.A., Gasbarrini A. The human gut microbiota and virome: Potential therapeutic implications. Dig. Liver Dis. 2015;47:1007–1012. doi: 10.1016/j.dld.2015.07.008. PubMed DOI PMC
Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7:14. doi: 10.3390/microorganisms7010014. PubMed DOI PMC
Moissl-Eichinger C., Pausan M., Taffner J., Berg G., Bang C., Schmitz R.A. Archaea are interactive components of complex microbiomes. Trends Microbiol. 2018;26:70–85. doi: 10.1016/j.tim.2017.07.004. PubMed DOI
Kapitan M., Niemiec M.J., Steimle A., Frick J.S., Jacobsen I.D. Fungi as Part of the Microbiota and Interactions with Intestinal Bacteria. Curr. Top. Microbiol. Immunol. 2019;422:265–301. doi: 10.1007/82_2018_117. PubMed DOI
Chabe M., Lokmer A., Segurel L. Gut Protozoa: Friends or Foes of the Human Gut Microbiota? Trends Parasitol. 2017;33:925–934. doi: 10.1016/j.pt.2017.08.005. PubMed DOI
Swain Ewald H.A., Ewald P.W. Natural Selection, The Microbiome, and Public Health. Yale J. Biol. Med. 2018;91:445–455. PubMed PMC
Schroeder B.O., Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016;22:1079–1089. doi: 10.1038/nm.4185. PubMed DOI
Turroni F., Milani C., Duranti S., Lugli G.A., Bernasconi S., Margolles A., Di Pierro F., van Sinderen D., Ventura M. The infant gut microbiome as a microbial organ influencing host well-being. Ital. J. Pediatr. 2020;46:16. doi: 10.1186/s13052-020-0781-0. PubMed DOI PMC
Rutayisire E., Huang K., Liu Y., Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC. Gastroenterol. 2016;16:86. doi: 10.1186/s12876-016-0498-0. PubMed DOI PMC
Wang M., Radlowski E.C., Monaco M.H., Fahey G.C., Jr., Gaskins H.R., Donovan S.M. Mode of delivery and early nutrition modulate microbial colonization and fermentation products in neonatal piglets. J. Nutr. 2013;143:795–803. doi: 10.3945/jn.112.173096. PubMed DOI
Donovan S.M. Evolution of the gut microbiome in infancy within an ecological context. Curr. Opin. Clin. Nutr. Metab. Care. 2020;23:223–227. doi: 10.1097/MCO.0000000000000650. PubMed DOI PMC
Davis E.C., Dinsmoor A.M., Wang M., Donovan S.M. Microbiome composition in pediatric populations from birth to adolescence: Impact of diet and prebiotic and probiotic interventions. Dig. Dis. Sci. 2020;65:706–722. doi: 10.1007/s10620-020-06092-x. PubMed DOI PMC
Trebichavsky I., Rada V., Splichalova A., Splichal I. Cross-talk of human gut with bifidobacteria. Nutr. Rev. 2009;67:77–82. doi: 10.1111/j.1753-4887.2008.00141.x. PubMed DOI
Turroni F., Peano C., Pass D.A., Foroni E., Severgnini M., Claesson M.J., Kerr C., Hourihane J., Murray D., Fuligni F., et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE. 2012;7:e36957. doi: 10.1371/journal.pone.0036957. PubMed DOI PMC
Turroni F., Milani C., Duranti S., Ferrario C., Lugli G.A., Mancabelli L., van Sinderen D., Ventura M. Bifidobacteria and the infant gut: An example of co-evolution and natural selection. Cell Mol. Life Sci. 2018;75:103–118. doi: 10.1007/s00018-017-2672-0. PubMed DOI PMC
Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J.M., Topping D.L., Suzuki T., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469:543–547. doi: 10.1038/nature09646. PubMed DOI
Barba-Vidal E., Castillejos L., Lopez-Colom P., Rivero U.M., Moreno Munoz J.A., Martin-Orue S.M. Evaluation of the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 capacities to improve health status and fight digestive pathogens in a piglet model. Front. Microbiol. 2017;8:533. doi: 10.3389/fmicb.2017.00533. PubMed DOI PMC
Delcaru C., Alexandru I., Podgoreanu P., Cristea V.C., Bleotu C., Chifiriuc M.C., Bezirtzoglou E., Lazar V. Antagonistic activities of some Bifidobacterium sp. strains isolated from resident infant gastrointestinal microbiota on Gram-negative enteric pathogens. Anaerobe. 2016;39:39–44. doi: 10.1016/j.anaerobe.2016.02.010. PubMed DOI
Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107. PubMed DOI PMC
Ficara M., Pietrella E., Spada C., Della Casa M.E., Lucaccioni L., Iughetti L., Berardi A. Changes of intestinal microbiota in early life. J. Matern. Fetal Neonatal Med. 2020;33:1036–1043. doi: 10.1080/14767058.2018.1506760. PubMed DOI
Rodriguez J.M., Murphy K., Stanton C., Ross R.P., Kober O.I., Juge N., Avershina E., Rudi K., Narbad A., Jenmalm M.C., et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2015;26:26050. doi: 10.3402/mehd.v26.26050. PubMed DOI PMC
Gilbert J.A., Blaser M.J., Caporaso J.G., Jansson J.K., Lynch S.V., Knight R. Current understanding of the human microbiome. Nat. Med. 2018;24:392–400. doi: 10.1038/nm.4517. PubMed DOI PMC
Almeida A., Mitchell A.L., Boland M., Forster S.C., Gloor G.B., Tarkowska A., Lawley T.D., Finn R.D. A new genomic blueprint of the human gut microbiota. Nature. 2019;568:499–504. doi: 10.1038/s41586-019-0965-1. PubMed DOI PMC
Nayfach S., Shi Z.J., Seshadri R., Pollard K.S., Kyrpides N.C. New insights from uncultivated genomes of the global human gut microbiome. Nature. 2019;568:505–510. doi: 10.1038/s41586-019-1058-x. PubMed DOI PMC
Sender R., Fuchs S., Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164:337–340. doi: 10.1016/j.cell.2016.01.013. PubMed DOI
Allaire J.M., Crowley S.M., Law H.T., Chang S.Y., Ko H.J., Vallance B.A. The intestinal epithelium: Central coordinator of mucosal immunity. Trends Immunol. 2018;1 doi: 10.1016/j.it.2018.04.002. PubMed DOI
Gunzel D., Fromm M. Claudins and other tight junction proteins. Compr. Physiol. 2012;2:1819–1852. doi: 10.1002/cphy.c110045. PubMed DOI
Kim C.H., Kim D., Ha Y., Cho K.D., Lee B.H., Seo I.W., Kim S.H., Chae C. Expression of mucins and trefoil factor family protein-1 in the colon of pigs naturally infected with Salmonella typhimurium. J. Comp. Pathol. 2009;140:38–42. doi: 10.1016/j.jcpa.2008.10.002. PubMed DOI
Linden S.K., Florin T.H., McGuckin M.A. Mucin dynamics in intestinal bacterial infection. PLoS ONE. 2008;3:e3952. doi: 10.1371/journal.pone.0003952. PubMed DOI PMC
Breschi A., Gingeras T.R., Guigo R. Comparative transcriptomics in human and mouse. Nat. Rev. Genet. 2017;18:425–440. doi: 10.1038/nrg.2017.19. PubMed DOI PMC
Xiao L., Feng Q., Liang S., Sonne S.B., Xia Z., Qiu X., Li X., Long H., Zhang J., Zhang D., et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 2015;33:1103–1108. doi: 10.1038/nbt.3353. PubMed DOI
Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC
Cavaillon J.M., Singer M., Skirecki T. Sepsis therapies: Learning from 30 years of failure of translational research to propose new leads. EMBO Mol. Med. 2020;12:e10128. doi: 10.15252/emmm.201810128. PubMed DOI PMC
Burrin D., Sangild P.T., Stoll B., Thymann T., Buddington R., Marini J., Olutoye O., Shulman R.J. Translational advances in pediatric nutrition and gastroenterology: New insights from pig models. Annu. Rev. Anim. Biosci. 2020;8:321–354. doi: 10.1146/annurev-animal-020518-115142. PubMed DOI
Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. The pig: A model for human infectious diseases. Trends Microbiol. 2012;20:50–57. doi: 10.1016/j.tim.2011.11.002. PubMed DOI PMC
Waterhouse A., Leslie D.C., Bolgen D.E., Lightbown S., Dimitrakakis N., Cartwright M.J., Seiler B., Lightbown K., Smith K., Lombardo P., et al. Modified clinical monitoring assesment criteria for multi-organ failure during bacteremia and sepsis progression in a pig model. Adv. Crit. Care Med. 2018;1:2.
Xiao L., Estelle J., Kiilerich P., Ramayo-Caldas Y., Xia Z., Feng Q., Liang S., Pedersen A.O., Kjeldsen N.J., Liu C., et al. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 2016;1:16161. doi: 10.1038/nmicrobiol.2016.161. PubMed DOI
Vlasova A.N., Paim F.C., Kandasamy S., Alhamo M.A., Fischer D.D., Langel S.N., Deblais L., Kumar A., Chepngeno J., Shao L., et al. Protein malnutrition modifies innate immunity and gene expression by intestinal epithelial cells and human rotavirus infection in neonatal gnotobiotic pigs. mSphere. 2017;2 doi: 10.1128/mSphere.00046-17. PubMed DOI PMC
Wang M., Donovan S.M. Human microbiota-associated swine: Current progress and future opportunities. ILAR J. 2015;56:63–73. doi: 10.1093/ilar/ilv006. PubMed DOI PMC
Brugiroux S., Beutler M., Pfann C., Garzetti D., Ruscheweyh H.J., Ring D., Diehl M., Herp S., Lotscher Y., Hussain S., et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2016;2:16215. doi: 10.1038/nmicrobiol.2016.215. PubMed DOI
Kim Y.G., Sakamoto K., Seo S.U., Pickard J.M., Gillilland M.G., III, Pudlo N.A., Hoostal M., Li X., Wang T.D., Feehley T., et al. Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science. 2017;356:315–319. doi: 10.1126/science.aag2029. PubMed DOI PMC
Splichal I., Donovan S.M., Splichalova Z., Bunesova V.N., Vlkova E., Jenistova V., Killer J., Svejstil R., Skrivanova E., Splichalova A. Colonization of germ-free piglets with commensal Lactobacillus amylovorus, Lactobacillus mucosae, and probiotic E. coli Nissle 1917 and their interference with Salmonella Typhimurium. Microorganisms. 2019;7:273. doi: 10.3390/microorganisms7080273. PubMed DOI PMC
Baumler A.J., Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535:85–93. doi: 10.1038/nature18849. PubMed DOI PMC
Hurley D., McCusker M.P., Fanning S., Martins M. Salmonella-host interactions—Modulation of the host innate immune system. Front. Immunol. 2014;5:481. doi: 10.3389/fimmu.2014.00481. PubMed DOI PMC
Campos J., Mourao J., Peixe L., Antunes P. Non-typhoidal Salmonella in the pig production chain: A comprehensive analysis of Its impact on human health. Pathogens. 2019;8:19. doi: 10.3390/pathogens8010019. PubMed DOI PMC
Kaiser P., Hardt W.D. Salmonella typhimurium diarrhea: Switching the mucosal epithelium from homeostasis to defense. Curr. Opin. Immunol. 2011;23:456–463. doi: 10.1016/j.coi.2011.06.004. PubMed DOI
Zhang S., Kingsley R.A., Santos R.L., Andrews-Polymenis H., Raffatellu M., Figueiredo J., Nunes J., Tsolis R.M., Adams L.G., Baumler A.J. Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect. Immun. 2003;71:1–12. doi: 10.1128/IAI.71.1.1-12.2003. PubMed DOI PMC
Wen S.C., Best E., Nourse C. Non-typhoidal Salmonella infections in children: Review of literature and recommendations for management. J. Paediatr. Child. Health. 2017;53:936–941. doi: 10.1111/jpc.13585. PubMed DOI
Rada V., Petr J. A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods. 2000;43:127–132. doi: 10.1016/S0167-7012(00)00205-0. PubMed DOI
Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/JB.173.2.697-703.1991. PubMed DOI PMC
Yoon S.H., Ha S.M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC
Killer J., Sedlacek I., Rada V., Havlik J., Kopecny J. Reclassification of Bifidobacterium stercoris Kim et al. 2010 as a later heterotypic synonym of Bifidobacterium adolescentis. Int. J. Syst. Evol. Microbiol. 2013;63:4350–4353. doi: 10.1099/ijs.0.054957-0. PubMed DOI
Pechar R., Rada V., Parafati L., Musilova S., Bunesova V., Vlkova E., Killer J., Mrazek J., Kmet V., Svejstil R. Mupirocin-mucin agar for selective enumeration of Bifidobacterium bifidum. Int. J. Food Microbiol. 2014;191:32–35. doi: 10.1016/j.ijfoodmicro.2014.08.032. PubMed DOI
Splichal I., Rychlik I., Splichalova I., Karasova D., Splichalova A. Toll-like receptor 4 signaling in the ileum and colon of gnotobiotic piglets infected with Salmonella Typhimurium or Its isogenic rfa mutants. Toxins. 2020;12:545. doi: 10.3390/toxins12090545. PubMed DOI PMC
Mandel L., Travnicek J. The minipig as a model in gnotobiology. Nahrung. 1987;31:613–618. doi: 10.1002/food.19870310580. PubMed DOI
Splichalova A., Slavikova V., Splichalova Z., Splichal I. Preterm life in sterile conditions: A study on preterm, germ-free piglets. Front. Immunol. 2018;9:220. doi: 10.3389/fimmu.2018.00220. PubMed DOI PMC
Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI
Pechar R., Killer J., Mekadim C., Geigerova M., Rada V. Classification of culturable bifidobacterial population from colonic samples of wild pigs (Sus scrofa) based on three molecular genetic methods. Curr. Microbiol. 2017;74:1324–1331. doi: 10.1007/s00284-017-1320-0. PubMed DOI
Killer J., Marounek M. Fermentation of mucin by bifidobacteria from rectal samples of humans and rectal and intestinal samples of animals. Folia Microbiol. 2011;56:85–89. doi: 10.1007/s12223-011-0022-4. PubMed DOI
Pechar R., Killer J., Salmonova H., Geigerova M., Svejstil R., Svec P., Sedlacek I., Rada V., Benada O. Bifidobacterium apri sp. nov., a thermophilic actinobacterium isolated from the digestive tract of wild pigs (Sus scrofa) Int. J. Syst. Evol. Microbiol. 2017;67:2349–2356. doi: 10.1099/ijsem.0.001956. PubMed DOI
Fischer D.D., Kandasamy S., Paim F.C., Langel S.N., Alhamo M.A., Shao L., Chepngeno J., Miyazaki A., Huang H.C., Kumar A., et al. Protein Malnutrition Alters Tryptophan and Angiotensin-Converting Enzyme 2 Homeostasis and Adaptive Immune Responses in Human Rotavirus-Infected Gnotobiotic Pigs with Human Infant Fecal Microbiota Transplant. Clin. Vaccine Immunol. 2017;24 doi: 10.1128/CVI.00172-17. PubMed DOI PMC
Brunse A., Martin L., Rasmussen T.S., Christensen L., Skovsted C.M., Wiese M., Khakimov B., Pieper R., Nielsen D.S., Sangild P.T., et al. Effect of fecal microbiota transplantation route of administration on gut colonization and host response in preterm pigs. ISME J. 2019;13:720–733. doi: 10.1038/s41396-018-0301-z. PubMed DOI PMC
Nguyen D.N., Jiang P., Frokiaer H., Heegaard P.M., Thymann T., Sangild P.T. Delayed development of systemic immunity in preterm pigs as a model for preterm infants. Sci. Rep. 2016;6:36816. doi: 10.1038/srep36816. PubMed DOI PMC
Lamendella R., Santo Domingo J.W., Kelty C., Oerther D.B. Bifidobacteria in feces and environmental waters. Appl. Environ. Microbiol. 2008;74:575–584. doi: 10.1128/AEM.01221-07. PubMed DOI PMC
Killer J., Mrazek J., Bunesova V., Havlik J., Koppova I., Benada O., Rada V., Kopecny J., Vlkova E. Pseudoscardovia suis gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of wild pigs (Sus scrofa) Syst. Appl. Microbiol. 2013;36:11–16. doi: 10.1016/j.syapm.2012.09.001. PubMed DOI
Chattha K.S., Vlasova A.N., Kandasamy S., Rajashekara G., Saif L.J. Divergent immunomodulating effects of probiotics on T cell responses to oral attenuated human rotavirus vaccine and virulent human rotavirus infection in a neonatal gnotobiotic piglet disease model. J. Immunol. 2013;191:2446–2456. doi: 10.4049/jimmunol.1300678. PubMed DOI PMC
Splichalova A., Trebichavsky I., Rada V., Vlkova E., Sonnenborn U., Splichal I. Interference of Bifidobacterium choerinum or Escherichia coli Nissle 1917 with Salmonella Typhimurium in gnotobiotic piglets correlates with cytokine patterns in blood and intestine. Clin. Exp. Immunol. 2011;163:242–249. doi: 10.1111/j.1365-2249.2010.04283.x. PubMed DOI PMC
Abe F., Muto M., Yaeshima T., Iwatsuki K., Aihara H., Ohashi Y., Fujisawa T. Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability. Anaerobe. 2010;16:131–136. doi: 10.1016/j.anaerobe.2009.07.006. PubMed DOI
Arguello H., Estelle J., Zaldivar-Lopez S., Jimenez-Marin A., Carvajal A., Lopez-Bascon M.A., Crispie F., O’Sullivan O., Cotter P.D., Priego-Capote F., et al. Early Salmonella Typhimurium infection in pigs disrupts microbiome composition and functionality principally at the ileum mucosa. Sci. Rep. 2018;8:7788. doi: 10.1038/s41598-018-26083-3. PubMed DOI PMC
McClelland M., Sanderson K.E., Spieth J., Clifton S.W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M., Du F., et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001;413:852–856. doi: 10.1038/35101614. PubMed DOI
Clarke R.C., Gyles C.L. Virulence of wild and mutant strains of Salmonella typhimurium in ligated intestinal segments of calves, pigs, and rabbits. Am. J. Vet. Res. 1987;48:504–510. PubMed
Perez-Lopez A., Behnsen J., Nuccio S.P., Raffatellu M. Mucosal immunity to pathogenic intestinal bacteria. Nat. Rev. Immunol. 2016;16:135–148. doi: 10.1038/nri.2015.17. PubMed DOI
Johansson M.E., Phillipson M., Petersson J., Velcich A., Holm L., Hansson G.C. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA. 2008;105:15064–15069. doi: 10.1073/pnas.0803124105. PubMed DOI PMC
Linden S.K., Sutton P., Karlsson N.G., Korolik V., McGuckin M.A. Mucins in the mucosal barrier to infection. Mucosal. Immunol. 2008;1:183–197. doi: 10.1038/mi.2008.5. PubMed DOI PMC
Zhang K., Griffiths G., Repnik U., Hornef M. Seeing is understanding: Salmonella’s way to penetrate the intestinal epithelium. Int. J. Med. Microbiol. 2018;308:97–106. doi: 10.1016/j.ijmm.2017.09.011. PubMed DOI
Viswanathan V.K., Hodges K., Hecht G. Enteric infection meets intestinal function: How bacterial pathogens cause diarrhoea. Nat. Rev. Microbiol. 2009;7:110–119. doi: 10.1038/nrmicro2053. PubMed DOI PMC
West A.B., Isaac C.A., Carboni J.M., Morrow J.S., Mooseker M.S., Barwick K.W. Localization of villin, a cytoskeletal protein specific to microvilli, in human ileum and colon and in colonic neoplasms. Gastroenterology. 1988;94:343–352. doi: 10.1016/0016-5085(88)90421-0. PubMed DOI
Lhocine N., Arena E.T., Bomme P., Ubelmann F., Prevost M.C., Robine S., Sansonetti P.J. Apical invasion of intestinal epithelial cells by Salmonella typhimurium requires villin to remodel the brush border actin cytoskeleton. Cell Host Microbe. 2015;17:164–177. doi: 10.1016/j.chom.2014.12.003. PubMed DOI PMC
Galen J.E., Buskirk A.D., Tennant S.M., Pasetti M.F. Live attenuated human Salmonella vaccine candidates: Tracking the pathogen in natural infection and stimulation of host immunity. EcoSal Plus. 2016;7 doi: 10.1128/ecosalplus.ESP-0010-2016. PubMed DOI PMC
Gunzel D., Yu A.S. Claudins and the modulation of tight junction permeability. Physiol. Rev. 2013;93:525–569. doi: 10.1152/physrev.00019.2012. PubMed DOI PMC
Kiela P.R., Ghishan F.K. Physiology of intestinal absorption and secretion. Best. Pract. Res. Clin. Gastroenterol. 2016;30:145–159. doi: 10.1016/j.bpg.2016.02.007. PubMed DOI PMC
Al-Sadi R., Khatib K., Guo S., Ye D., Youssef M., Ma T. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;300:G1054–G1064. doi: 10.1152/ajpgi.00055.2011. PubMed DOI PMC
Edelblum K.L., Shen L., Weber C.R., Marchiando A.M., Clay B.S., Wang Y., Prinz I., Malissen B., Sperling A.I., Turner J.R. Dynamic migration of gammadelta intraepithelial lymphocytes requires occludin. Proc. Natl. Acad. Sci. USA. 2012;109:7097–7102. doi: 10.1073/pnas.1112519109. PubMed DOI PMC
Yan T., Zhang F., He Y., Wang X., Jin X., Zhang P., Bi D. Enterococcus faecium HDRsEf1 elevates the intestinal barrier defense against enterotoxigenic Escherichia coli and regulates occludin expression via activation of TLR-2 and PI3K signalling pathways. Lett. Appl. Microbiol. 2018;67:520–527. doi: 10.1111/lam.13067. PubMed DOI
Kohler H., Sakaguchi T., Hurley B.P., Kase B.A., Reinecker H.C., McCormick B.A. Salmonella enterica serovar Typhimurium regulates intercellular junction proteins and facilitates transepithelial neutrophil and bacterial passage. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;293:G178–G187. doi: 10.1152/ajpgi.00535.2006. PubMed DOI
Loetscher Y., Wieser A., Lengefeld J., Kaiser P., Schubert S., Heikenwalder M., Hardt W.D., Stecher B. Salmonella transiently reside in luminal neutrophils in the inflamed gut. PLoS ONE. 2012;7:e34812. doi: 10.1371/journal.pone.0034812. PubMed DOI PMC
Foster N., Lovell M.A., Marston K.L., Hulme S.D., Frost A.J., Bland P., Barrow P.A. Rapid protection of gnotobiotic pigs against experimental salmonellosis following induction of polymorphonuclear leukocytes by avirulent Salmonella enterica. Infect. Immun. 2003;71:2182–2191. doi: 10.1128/IAI.71.4.2182-2191.2003. PubMed DOI PMC
Splichal I., Trebichavsky I., Splichalova A., Barrow P.A. Protection of gnotobiotic pigs against Salmonella enterica serotype Typhimurium by rough mutant of the same serotype is accompanied by the change of local and systemic cytokine response. Vet. Immunol. Immunopathol. 2005;103:155–161. doi: 10.1016/j.vetimm.2004.09.001. PubMed DOI
Splichalova A., Splichalova Z., Karasova D., Rychlik I., Trevisi P., Sinkora M., Splichal I. Impact of the lipopolysaccharide chemotype of Salmonella enterica serovar Typhimurium on virulence in gnotobiotic piglets. Toxins. 2019;11:534. doi: 10.3390/toxins11090534. PubMed DOI PMC
Nevola J.J., Laux D.C., Cohen P.S. In vivo colonization of the mouse large intestine and in vitro penetration of intestinal mucus by an avirulent smooth strain of Salmonella typhimurium and its lipopolysaccharide-deficient mutant. Infect. Immun. 1987;55:2884–2890. doi: 10.1128/IAI.55.12.2884-2890.1987. PubMed DOI PMC
Dinarello C.A. Historical insights into cytokines. Eur. J. Immunol. 2007;37(Suppl. 1):S34–S45. doi: 10.1002/eji.200737772. PubMed DOI PMC
Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Cole E., Gillespie S., Vulliamy P., Brohi K. Multiple organ dysfunction after trauma. Br. J. Surg. 2020;107:402–412. doi: 10.1002/bjs.11361. PubMed DOI PMC
Pierrakos C., Vincent J.L. Sepsis biomarkers: A review. Crit. Care. 2010;14:R15. doi: 10.1186/cc8872. PubMed DOI PMC
Chaudhry H., Zhou J., Zhong Y., Ali M.M., McGuire F., Nagarkatti P.S., Nagarkatti M. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27:669–684. PubMed PMC
Splichal I., Splichalova A. Experimental enteric bacterial infections in pigs. J. Infect. Dis. 2018;218:504–505. doi: 10.1093/infdis/jiy185. PubMed DOI
Splichalova A., Splichal I., Sonnenborn U., Rada V. A modified MacConkey agar for selective enumeration of necrotoxigenic E. coli O55 and probiotic E. coli Nissle 1917. J. Microbiol. Methods. 2014;104:82–86. doi: 10.1016/j.mimet.2014.06.017. PubMed DOI
Splichalova A., Splichal I. Local and systemic occurrences of HMGB1 in gnotobiotic piglets infected with E. coli O55 are related to bacterial translocation and inflammatory cytokines. Cytokine. 2012;60:597–600. doi: 10.1016/j.cyto.2012.07.026. PubMed DOI
Gogos C.A., Drosou E., Bassaris H.P., Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: A marker for prognosis and future therapeutic options. J. Infect. Dis. 2000;181:176–180. doi: 10.1086/315214. PubMed DOI