probiotic properties testing
Dotaz
Zobrazit nápovědu
Breast milk, as the optimal food for infants and young children, contains all the components necessary for proper growth and development. It is a rich source of both essential nutrients and biologically active factors, making breast milk a unique food with scientifically proven health-promoting properties. Among the entire range of biologically active factors, breast milk microorganisms and prebiotic factors, in the form of breast milk oligosaccharides, occupy an important place. The aim of our research was to determine the occurrence of bacteria with probiotic potential, belonging to the Lactobacillaceae family, in the environment of breast milk and breast milk oligosaccharides. The study included 63 human milk samples from breastfeeding women at various stages of lactation. Microorganism identification based on culture tests and MALDI TOF/MS, macronutrient analysis using the MIRIS human milk analyser, as well as analysis of human milk oligosaccharides using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry were performed. The results have shown that breast milk from different breastfeeding women is characterized by great diversity in terms of the presence of Lacto-bacillaceae bacteria in its microbiological composition. These bacteria were present in 22.2 % of the tested breast milk samples. Analysis of the human milk oligosaccharide profile revealed a slightly higher content of prebiotic factors in breast milk samples containing Lactobacillaceae, including 2'-fucosyllactose, oligosaccharide occurring in the highest amount in breast milk.
A wide range of articles describe the role of different probiotics in the prevention or treatment of various diseases. However, currently, the focus is shifting from whole microorganisms to their easier-to-define components that can confer similar or stronger benefits on the host. Here, we aimed to describe polysaccharide B.PAT, which is a surface antigen isolated from Bifidobacterium animalis ssp. animalis CCDM 218 and to understand the relationship between its structure and function. For this reason, we determined its glycerol phosphate-substituted structure, which consists of glucose, galactose, and rhamnose residues creating the following repeating unit: To fully understand the role of glycerol phosphate substitution on the B.PAT function, we prepared the dephosphorylated counterpart (B.MAT) and tested their immunomodulatory properties. The results showed that the loss of glycerol phosphate increased the production of IL-6, IL-10, IL-12, and TNF-α in bone marrow dendritic cells alone and after treatment with Lacticaseibacillus rhamnosus GG. Further studies indicated that dephosphorylation can enhance B.PAT properties to suppress IL-1β-induced inflammatory response in Caco-2 and HT-29 cells. Thus, we suggest that further investigation of B.PAT and B.MAT may reveal distinct functionalities that can be exploited in the treatment of various diseases and may constitute an alternative to probiotics.
- MeSH
- bakteriální polysacharidy farmakologie chemie izolace a purifikace MeSH
- Bifidobacterium animalis * chemie MeSH
- buňky HT-29 MeSH
- Caco-2 buňky MeSH
- cytokiny metabolismus MeSH
- dendritické buňky účinky léků imunologie metabolismus MeSH
- fosforylace účinky léků MeSH
- imunologické faktory farmakologie chemie izolace a purifikace MeSH
- Lacticaseibacillus rhamnosus chemie MeSH
- lidé MeSH
- myši MeSH
- probiotika farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The objective of this study was to isolate, identify, and assess the safety and functionality in vitro of putative probiotic bacterial strains. Isolation procedures were based on standard methods using elective and selective media. The isolates were identified by comparative 16S rRNA sequencing analysis while their safety was determined according to the safety tests recommended by the FAO/WHO such as antibiotic resistance, hemolysin, and biogenic amine production. Most of the isolates did not pass the in vitro safety tests; therefore, only Lactiplantibacillus plantarum (from ant intestine and cheese), Lacticaseibacillus paracasei (from goat milk and kimchi), Enterococcus faecium (from chili doenjang and vegetables with kimchi ingredients), Limosilactobacillus fermentum (from saliva), and Companilactobacillus alimentarius (from kimchi) were identified and selected for further studies. The isolates were further differentiated by rep-PCR and identified to the strain level by genotypic (16S rRNA) and phenotypic (Gen III) approaches. Subsequently, the strain tolerance to acid and bile was evaluated resulting in good viability after simulated gastrointestinal tract passage. Adhesion to mucin in vitro and the presence of mub, mapA, and ef-tu genes confirmed the adhesive potential of the strains and the results of features associated with adhesion such as hydrophobicity and zeta potential extended the insights. This study reflects the importance of fermented and non-fermented food products as a promising source of lactic acid bacteria with potential probiotic properties. Additionally, it aims to highlight the challenges associated with the selection of safe strains, which often fail in the in vitro tests, thus hindering the possibilities of "uncovering" novel and safe probiotic strains.
- MeSH
- bakteriální adheze MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- Lactobacillales genetika izolace a purifikace klasifikace metabolismus MeSH
- potravinářská mikrobiologie * MeSH
- probiotika * izolace a purifikace MeSH
- RNA ribozomální 16S * genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This study investigated the therapeutic potential of probiotic bifidobacteria, isolated from Iranian fermented dairy products, in a hyperlipidemic animal model. Bifidobacterium strains were extracted from traditional dairy samples and screened using physiological and phenotypic examinations, 16S rRNA analysis, and probiotic properties such as tolerance to gastrointestinal juice, antimicrobial activity, and antibiotic susceptibility. The ability of the screened bifidobacteria to reduce serum and liver lipids in vivo was tested using male Wistar rats. Six strains of bifidobacteria were isolated from traditional Iranian fermented dairy. These strains showed promising in vitro activity in lowering triglyceride and cholesterol, tolerance to simulated gastrointestinal juice, the ability to adhere to Caco-2 cells, acceptable antibiotic susceptibility, and a broad spectrum of antibacterial activity. The diet supplemented with isolated bifidobacteria significantly reduced serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), liver tissue lipid levels, and hepatic enzymes in animals when compared to a high-fat diet without strains (p < 0.01). Additionally, the potential probiotic-supplemented diet significantly increased bile acid excretion in the feces and upregulated hepatic CYP7A1 expression levels (p < 0.05), while NPC1L1, ACAT2, and MTP gene expressions in small intestinal cells were downregulated (p < 0.05). Bifidobacteria isolated from Iranian traditional dairy showed potential for use in the production of fermented foods that have hypolipemic activity in the host.
- MeSH
- antibakteriální látky farmakologie MeSH
- Bifidobacterium * genetika izolace a purifikace metabolismus MeSH
- Caco-2 buňky MeSH
- cholesterol-7-alfa-hydroxylasa genetika metabolismus MeSH
- cholesterol krev metabolismus MeSH
- feces mikrobiologie MeSH
- hyperlipidemie * MeSH
- játra metabolismus MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- mléčné výrobky mikrobiologie MeSH
- modely nemocí na zvířatech MeSH
- potkani Wistar * MeSH
- probiotika * aplikace a dávkování farmakologie MeSH
- RNA ribozomální 16S genetika MeSH
- triglyceridy krev metabolismus MeSH
- žlučové kyseliny a soli metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Írán MeSH
Probiotics have been used in human and veterinary medicine to increase resistance to pathogens and provide protection against external impacts for many years. Pathogens are often transmitted to humans through animal product consumption. Therefore, it is assumed that probiotics protecting animals may also protect the humans who consume them. Many tested strains of probiotic bacteria can be used for individualized therapy. The recently isolated Lactobacillus plantarum R2 BiocenolTM has proven to be preferential in aquaculture, and potential benefits in humans are expected. A simple oral dosage form should be developed to test this hypothesis by a suitable preparation method, i.e., lyophilization, allowing the bacteria to survive longer. Lyophilizates were formed from silicates (Neusilin® NS2N; US2), cellulose derivates (Avicel® PH-101), and saccharides (inulin; saccharose; modified starch® 1500). They were evaluated for their physicochemical properties (pH leachate, moisture content, water absorption, wetting time, DSC tests, densities, and flow properties); their bacterial viability was determined in conditions including relevant studies over 6 months at 4 °C and scanned under an electron microscope. Lyophilizate composed of Neusilin® NS2N and saccharose appeared to be the most advantageous in terms of viability without any significant decrease. Its physicochemical properties are also suitable for capsule encapsulation, subsequent clinical evaluation, and individualized therapy.
- Publikační typ
- časopisecké články MeSH
The beneficial influence of bacteriocin-producing, probiotic, mostly non-autochthonous bacteria has already been reported in various animals. However, their use in horses provides limited information, and results with autochthonous bacteria have not been reported. Therefore, the main objective of this model study was to test the effect of autochthonous, bacteriocin-producing faecal strain Enterococcus faecium EF 412 application in horses. One gram of freeze-dried EF 412 strain (109 CFU/mL for 21 days) was applied to horses in a small feed ball. Clinically healthy horses (12), Slovak warm-blood breed of various ages (5-13 years), were involved in a 35-day-long experiment, also functioning as control for themselves. They were stabled in separate boxes (university property), fed twice a day (hay, whole oats or grazed) with water access ad libitum. Sampling was performed at the start of the experiment, i.e. at days 0/1, 21 (3 weeks of EF 412 application) and at day 35 (2 weeks of EF 412 cessation). EF 412 colonized GIT of horses was 3.54 ± 0.75 CFU/g (log 10) at day 21. The eggs of the nematode Strongylus spp. were not found in horses after EF 412 application, and Eimeria spp. oocysts were similarly not found. The other microbiota were not reduced as evaluated by the use of standard method. Using next-generation sequencing, at phylum level, phyla Bacteroidetes and Firmicutes dominated and at family level, they were Bacteroidales BS11 and S24-7 gut goups and Lentisphaerae. In horses, the increasing tendency in phagocytic activity was noted after EF 412 application. Biochemical parameters were in the physiological range. Total protein value was significantly decreased at day 21 compared with day 0/1 as well as with day 35 (P < 0.05). Cholesterol and triglycerides were influenced (decreased) at day 21 compared with day 0/1 and day 35. Neither nematode eggs Strongylus spp. nor Eimeria spp. oocysts were found in faeces after EF 412 application. Autochthonous, faecal strain E. faecium EF 412 showed promising application potential.
Currently, there is a growing need to prepare small batches of enteric capsules for individual therapy or clinical evaluation since many acidic-sensitive substances should be protected from the stomach's acidic environment, including probiotics or fecal material, in the fecal microbiota transplantation (FMT) process. A suitable method seems to be the encapsulation of drugs or lyophilized alternatively frozen biological suspensions in commercial hard enteric capsules prepared by so-called Enteric Capsule Drug Delivery Technology (ECDDT). Manufacturers supply these types of capsules, made from pH-soluble polymers, in products such as AR Caps®, EnTRinsicTM, and Vcaps® Enteric, or capsules made of gelling polymers that release their content as the gel erodes over time when passing through the digestive tract. These include DRcaps®, EMBO CAPS® AP, BioVXR®, or ACGcapsTM HD. Although not all capsules in all formulations meet pharmaceutical requirements for delayed-release dosage forms in disintegration and dissolution tests, they usually find practical application. This literature review presents their composition and properties. Since ECDDT is a new technology, this article is based on a limited number of references.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Lactobacilli in the vaginal tract are essential to protect against microbial infections. We therefore focused on isolating vaginal lactobacilli from pregnant women and testing their functional properties. Lactobacilli were isolated from 50 vaginal swabs and the purified isolates were identified by MALDI-TOF MS. Functional properties (antimicrobial activity, organic acids and hydrogen peroxide production, antibiotic susceptibility, auto-aggregation, and hydrophobicity) of selected isolates were tested. Lactobacilli (41 strains) were identified in 58% of swabs with a predominance of Lactobacillus crispatus (48%) followed by L. jensenii (21%), L. rhamnosus (14%), L. fermentum (10%), and L. gasseri (7%). The highest antibacterial activity was determined for L. fermentum and L. rhamnosus. Strong anti-Candida activity was observed for strains L. crispatus, L. fermentum, and L. rhamnosus. Strain L. jensenii 58C possessed the highest production of hydrogen peroxide (6.32 ± 0.60 mg/l). The best lactic acid producer was strain L. rhamnosus 72A (11.6 ± 0.2 g/l). All strains were resistant to fluconazole and metronidazole. The highest auto-aggregation was observed for strain L. crispatus 51A (98.8 ± 0.1% after 24 h). Strain L. rhamnosus 68A showed the highest hydrophobicity (69.1 ± 1.4%). Strains L. fermentum and L. rhamnosus showed high antibacterial activity and hydrophobicity, and strains L. crispatus possessed high auto-aggregation and anti-Candida activity. Thus, these strains alone or in a mix could be used for the preparation of probiotic products for treatment and prevention of vulvovaginal infections of pregnant and non-pregnant women.
- MeSH
- Candida růst a vývoj MeSH
- dospělí MeSH
- kandidóza * mikrobiologie terapie MeSH
- Lactobacillus * MeSH
- lidé MeSH
- těhotenství MeSH
- vagina mikrobiologie MeSH
- vaginitida * mikrobiologie terapie MeSH
- vulvitida * mikrobiologie terapie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The classical definition of probiotics states that bacteria must be alive to be beneficial for human organism. However, recent reports show that inactivated bacteria or their effector molecules can also possess such properties. In this study, we investigated the physical and immunomodulatory properties of four Bifidobacterium strains in the heat-treated (HT) and untreated (UN) forms. We showed that temperature treatment of bacteria changes their size and charge, which affects their interaction with epithelial and immune cells. Based on the in vitro assays, we observed that all tested strains reduced the level of OVA-induced IL-4, IL-5, and IL-13 in the spleen culture of OVA-sensitized mice. We selected Bifidobacterium longum ssp. longum CCM 7952 (Bl 7952) for further analysis. In vivo experiments confirmed that untreated Bl 7952 exhibited allergy-reducing properties when administered intranasally to OVA-sensitized mice, which manifested in significant suppression of airway inflammation. Untreated Bl 7952 decreased local and systemic levels of Th2 related cytokines, OVA-specific IgE antibodies and simultaneously inhibited airway eosinophilia. In contrast, heat-treated Bl 7952 was only able to reduce IL-4 levels in the lungs and eosinophils in bronchoalveolar lavage, but increased neutrophil and macrophage numbers. We demonstrated that the viability status of Bl 7952 is a prerequisite for the beneficial effects of bacteria, and that heat treatment reduces but does not completely abolish these properties. Further research on bacterial effector molecules to elucidate the beneficial effects of probiotics in the prevention of allergic diseases is warranted.
From 98 Lactobacillus strains, isolated from Algerian homemade cheeses, 14 (B1-B14) were selected based on their anti-Escherichia coli and anti-Staphylococcus aureus activities. These strains were also tested towards Listeria monocytogenes 161 and Salmonella Typhimurium LT2 and further investigated for their resistance to simulated gastrointestinal digestion, cell surface properties, ability to adhere to HT-29 cells, cholesterol lowering, antioxidant activity, and technological traits. Five isolates (B9, B13, B18, B19, and B38) were active against L. monocytogenes and Salmonella. From them, three isolates, identified as Lactobacillus brevis (B9, B13, and B38) by MALDI-TOF spectrometry and 16S rDNA sequencing, exhibited high tolerance to pancreatic juice, bile salts and acidic juices, high percentages of hydrophobicity (87, 92, and 81%, respectively), auto-aggregation (61, 68, and 72%, respectively), and adherence to HT-29 cells (79, 84, and 74%, respectively), which testify on their potential of colonization of the human intestine. On the other way, the strains B9 and B13 manifested the most relevant antioxidant activity and cholesterol-lowering ability, respectively. L. brevis strains showed low acidifying and good proteolytic activities with noticeable heat tolerance. The results gathered in this study highlighted the richness of Algerian artisanal cheeses on new lactobacilli strains with an excellent probiotic potential and demonstrated that L. brevis, largely used as nonstarter in cheese manufacture, could be exploited also as a probiotic for human use.
- MeSH
- antibióza MeSH
- bakteriální adheze MeSH
- buňky HT-29 MeSH
- Escherichia coli fyziologie MeSH
- Levilactobacillus brevis * izolace a purifikace fyziologie MeSH
- lidé MeSH
- Listeria monocytogenes * fyziologie MeSH
- potravinářská mikrobiologie * MeSH
- probiotika * izolace a purifikace metabolismus MeSH
- RNA ribozomální 16S genetika MeSH
- Staphylococcus aureus fyziologie MeSH
- sýr * mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH