Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teeth
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37241300
PubMed Central
PMC10223828
DOI
10.3390/ma16103674
PII: ma16103674
Knihovny.cz E-zdroje
- Klíčová slova
- acrylic teeth, biomaterials, compressive strength, connection between teeth and denture base, cytotoxicity, feldspar silane, methacrylic polymer, surface modification,
- Publikační typ
- časopisecké články MeSH
This study was aimed at investigating poly(methyl methacrylate) (PMMA), modified with a silanized feldspar filler at 10 wt.% and 30 wt.%, as a dental material system for the production of prosthetic teeth. Samples of this composite were subjected to a compressive strength test, three-layer methacrylic teeth were fabricated with the said materials, and their connection to a denture plate was examined. The biocompatibility of the materials was assessed via cytotoxicity tests on human gingival fibroblasts (HGFs) and Chinese hamster ovarian cells (CHO-K1). The addition of feldspar significantly improved the material's compressive strength, with neat PMMA reaching 107 MPa, and the addition of 30% feldspar raising it up to 159 MPa. As observed, composite teeth (cervical part made of neat PMMA, dentin with 10 wt.%, and enamel with 30 wt.% of feldspar) had good adhesion to the denture plate. Neither of the tested materials revealed any cytotoxic effects. In the case of hamster fibroblasts, increased cell viability was observed, with only morphological changes being noticed. Samples containing 10% or 30% of inorganic filler were determined to be safe for treated cells. The use of silanized feldspar to fabricate composite teeth increased their hardness, which is of significant clinical importance for the duration of use of non-retained dentures.
Centre for Advanced Technologies Adam Mickiewicz University in Poznan 61 614 Poznan Poland
Faculty of Chemistry Adam Mickiewicz University in Poznan 61 614 Poznan Poland
Zobrazit více v PubMed
Hildebrand H.F. Biomaterials—A history of 7000 years. Bio Nano Mater. 2013;14:3–4. doi: 10.1515/bnm-2013-0014. DOI
Sushma R., Vande A.V., Malvika S.R., Abhijeet K., Pronob K.S. A comparative study of the mechanical properties of clear and pink coloured denture base acrylic resins. Ann. Afr. Med. 2018;17:178–182. doi: 10.4103/aam.aam_65_17. PubMed DOI PMC
Bajunaid S.O., Baras B.H., Weir M.D., Xu H.H.K. Denture Acrylic Resin Material with Antibac-terial and Protein-Repelling Properties for the Prevention of Denture Stomatitis. Polymers. 2022;14:230–236. doi: 10.3390/polym14020230. PubMed DOI PMC
Mello P.C., Coppedê A.R., Macedo A.P., de Mattos M.G., Rodrigues R.C., Ribeiro R.F. Abrasion wear resistance of different artificial teeth opposed to metal and composite antagonists. J. Appl. Oral Sci. 2009;17:451–456. doi: 10.1590/S1678-77572009000500019. PubMed DOI PMC
Muhammad N., Sarfraz Z., Zafar M.S. Characterization of various acrylate based artificial teeth for denture fabrication. J. Mater. Sci. Mater. Med. 2022;33:17. doi: 10.1007/s10856-022-06645-8. PubMed DOI PMC
Sayed M.E., Lunkad H., Fageeh I., Jaafari M., Tawhari A., Muaidi T., Alshehri M.I., Jethlia A., Jain S. Comparative Evaluation of Compressive Bond Strength between Acrylic Denture Base and Teeth with Various Combinations of Mechanical and Chemical Treatments. Coatings. 2021;11:1527. doi: 10.3390/coatings11121527. DOI
Sa Y., Yang F., Wang Y., Wolke J.G.C., Jansen J.A. Modifications of Poly(Methyl Methacrylate) Cement for Application in Orthopedic Surgery. Adv. Exp. Med. Biol. 2018;1078:119–134. doi: 10.1007/978-981-13-0950-2_7. PubMed DOI
Ku K.L., Wu Y.S., Wang C.Y., Hong D.W., Chen Z.X., Huang C.A., Chu I.M., Lai P.L. Incorporation of surface-modified hydroxyapatite into poly(methyl methacrylate) to improve biological activity and bone ingrowth. R. Soc. Open Sci. 2019;6:182060. doi: 10.1098/rsos.182060. PubMed DOI PMC
Kono H., Tsujisaki H., Tajima K. Reinforcing Poly(methyl methacrylate) with Bacterial Cellulose Nanofibers Chemically Modified with Methacryolyl Groups. Nanomaterials. 2022;12:537. doi: 10.3390/nano12030537. PubMed DOI PMC
Arenas-Arrocena M.C., Argueta-Figueroa L., García-Contreras R., Martínez-Arenas O., Camacho-Flores B., Rodriguez-Torres M.P., Acosta-Torres L.S. New trends for the processing of poly(methyl methacrylate) biomaterial for dental prosthodontics. In: Reddy B.S., editor. Acrylic Polymers in Healthcare [Internet] IntechOpen; London, UK: 2017. DOI
Loyaga-Rendon P.G., Takahashi H., Hayakawa I., Iwasaki N.J. Compositional characteristics and hardness of acrylic and com-posite resin artificial teeth. Prosthet. Dent. 2007;98:141–149. doi: 10.1016/S0022-3913(07)60047-X. PubMed DOI
Raszewski Z., Nowakowska-Toporowska A., Wezgowiec J., Nowakowska D., Wieckiewicz W. Influence of silanized silica and silanized feldspar addition on the mechanical behavior of polymethyl methacrylate resin denture teeth. J. Prosthet. Dent. 2020;123:647.e1–647.e7. doi: 10.1016/j.prosdent.2019.12.007. PubMed DOI
Szabelski J., Karpinski R., Krakowski P., Jonak J. The Impact of Contaminating Poly (Methyl Methacrylate)(PMMA) Bone Cements on Their Compressive Strength. Materials. 2021;14:2555. doi: 10.3390/ma14102555. PubMed DOI PMC
Komang-Agung I.S., Hydravianto L., Sindrawati O., William P.S. Effect of Polymethylmethacrylate-Hydroxyapatite Composites on Callus Formation and Compressive Strength in Goat Vertebral Body. Malays. Orthop. J. 2018;12:6–13. doi: 10.5704/MOJ.1811.002. PubMed DOI PMC
Zafar M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers. 2020;12:2299. doi: 10.3390/polym12102299. PubMed DOI PMC
Dentistry—Artificial Teeth for Dental Prostheses. ISO; London, UK: 2017.
Ghaffari T., Hamedirad F., Ezzati B. In Vitro Comparison of Compressive and Tensile Strengths of Acrylic Resins Reinforced by Silver Nanoparticles at 2% and 0.2% Concentrations. J. Dent. Res. Dent. Clin. Dent. Prospect. 2014;8:204–209. doi: 10.5681/joddd.2014.037. PubMed DOI PMC
Hayran Y., Keskin Y., Yılmaz Ş. Cytotoxicity of polymethylmethacrylate copolymers. Ann. Med. Res. 2019;26:1868. doi: 10.5455/annalsmedres.2019.06.335. DOI
Balos S., Puskar T., Potran M., Markovic D., Pilic B., Pavlicevic J. Modulus of Elasticity, Flexural Strength and Biocompatibility of Poly(methyl methacrylate) Resins With Low Addition of Nanosilica. Res. Rev. J. Dent. Sci. 2016;4:22–33.
Özen J., Spah C., Çalar A., Dalkiz M. In vitro Cytotoxicity of Glass and Carbon Fiber-Reinforced Heat-Polymerized Acrylic Resin Denture Base Material. Turk. J. Med. Sci. 2006;36:121–126.
Tugut F., Coskun M.E., Akin H., Dogan D.O. Investigation of Impact Strength, Water Sorption and Cytotoxicity of Denture Base Resin Reinforced with Polypropylene Fiber: In Vitro Study. J. Adv. Oral Res. 2020;11:208–214. doi: 10.1177/2320206820930154. DOI
Saczko J., Dominiak M., Kulbacka J., Chwiłkowska A., Krawczykowska H. A simple and established method of tissue culture of human gingival fibroblasts for gingival augmentation. Folia Histochem. Cytobiol. 2008;46:117–119. doi: 10.2478/v10042-008-0017-4. PubMed DOI
Raszewski Z., Kulbacka J., Nowakowska-Toporowska A. Mechanical Properties, Cytotoxicity, and Fluoride Ion Release Capacity of Bioactive Glass-Modified Methacrylate Resin Used in Three-Dimensional Printing Technology. Materials. 2022;15:1133. doi: 10.3390/ma15031133. PubMed DOI PMC
Ennis C.P., Kaiser R.I. Mechanical studies on the electron induced degradation of polymethyl methacrylate and Kapton. Phys. Chem. Chem. Phys. 2010;12:14902–14915. doi: 10.1039/c0cp01130d. PubMed DOI
Tiwari P., Srivastava A.K., Khatak B.Q., Verma S., Upadhyay A., Sinha A.K., Ganguli T., Lodha G.S., Deb S.K. Structural modification of poly methyl methacrylate due to electron irradiation. Measurement. 2014;51:1–8. doi: 10.1016/j.measurement.2014.01.017. DOI
Bosch-Reig F., Gimeno-Adelantado J.V., Bosch-Mossi F., Doménech-Carbó A. Quantification of minerals from ATR-FTIR spectra with spectral interferences using the MRC method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;181:7–12. doi: 10.1016/j.saa.2017.02.012. PubMed DOI
Nidal W.E., Saied H.M., Azlan A., Zainal A., Mohd I. Thermal Characterization of Poly(Methyl Methacrylate)Filled with Barium Titanate as Denture Base Material. J. Phys. Sci. 2014;25:15–27.
Patil S.B., Naveen B.H., Patil N.P. Bonding acrylic teeth to acrylic resin denture bases: A review. Gerodontology. 2006;23:131–139. doi: 10.1111/j.1741-2358.2006.00129.x. PubMed DOI
Adejumoke A., Mervyn L., Donald C. The acrylic tooth-denture base bond: Effect of mechanical preparation and surface treatment. Eur. J. Prosthodont. Restor. Dent. 2007;15:108–114. PubMed
Radford D., Juszczyk A., Clark R. The bond between acrylic resin denture teeth and the denture base: Recommendations for best practice. Br. Dent. J. 2014;216:165–167. doi: 10.1038/sj.bdj.2014.99. PubMed DOI
Kurt M., Saraç Y.Ş., Ural Ç., Saraç D. Effect of pre-processing methods on bond strength between acrylic resin teeth and acrylic denture base resin. Gerodontology. 2012;29:e357–e362. doi: 10.1111/j.1741-2358.2011.00480.x. PubMed DOI
Prpić V., Schauperl Z., Glavina D., Ćatić A., Čimić S. Comparison of shear bond strengths of different types of denture teeth to different denture base resins. J. Adv. Prosthodont. 2020;12:376–382. doi: 10.4047/jap.2020.12.6.376. PubMed DOI PMC
Choi J.E., Uy C.E., Plaksina P., Ramani R.S., Ganjigatti R., Waddell J.N. Bond strength of denture teeth to heat-cured, cad/cam and 3d printed denture acrylics. J. Prosthodont. 2020;29:415–421. doi: 10.1111/jopr.13125. PubMed DOI
Aguiar E.F., Tonani R., Paiola F.G., Chinelatti M.A., Arruda C.N.F., de Matta J.C.S., da Pires-de-Souza F.C.P. Influence of aging on bond strength of artificial teeth to denture base acrylic resins. Braz. J. Oral Sci. 2018;17:e18373. doi: 10.20396/bjos.v17i0.8652929. DOI
Saavedra G., Valandro L.F., Leite F.P., Amaral R., Ozcan M., Bottino M.A., Kimpara E.T. Bond strength of acrylic teeth to denture base resin after various surface conditioning methods before and after thermocycling. Int. J. Prosthodont. 2007;20:99–201. PubMed
Attik G., Brown R., Jackson P., Creutzenberg O., Aboukhamis I., Rihn B.H. Internalization, cytotoxicity, apoptosis, and tumor necrosis factor-alpha expression in rat alveolar macrophages exposed to various dusts occurring in the ceramics industry. Inhal. Toxicol. 2008;20:1101–1112. doi: 10.1080/08958370802136731. PubMed DOI
Hina S., Nisar N., Sohai S. Work Place Related Health Hazards Among Dental Laboratory Technicians in Karachi. J. Pak. Dent. Assoc. 2018;26:181–188. doi: 10.25301/JPDA.264.181. DOI