Mechanical Properties, Cytotoxicity, and Fluoride Ion Release Capacity of Bioactive Glass-Modified Methacrylate Resin Used in Three-Dimensional Printing Technology
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
35161076
PubMed Central
PMC8838011
DOI
10.3390/ma15031133
PII: ma15031133
Knihovny.cz E-resources
- Keywords
- 3D printing, Poly(methyl methacrylate) resin (PMMA), bioactive material, cytotoxicity, mechanical properties,
- Publication type
- Journal Article MeSH
BACKGROUND: Clinically, three-dimensional (3D) printing technology is becoming a popular and efficient dental processing technology. Recently, there has been an increasing demand for dental materials that exhibit bioactive properties. The present study aimed to evaluate the mechanical properties, cytotoxicity, and fluoride ion release capacity of 3D-printed dental resins modified with bioactive glass. MATERIALS AND METHODS: The resin FotoDent splint used in the production of removable orthodontic splints, was modified by the addition of two types of bioactive glasses that are capable of releasing fluoride ions. The novel materials used for the production of dental splints were examined for their mechanical, physical, and biological properties (fracture resistance, sorption, solubility, elution of nonpolymeric substances, and release of fluoride ions over time) and cytotoxic effects on cell cultures. RESULTS: Initially, the fracture toughness of the 3D-printed resin was found to be 55 MPa, but after modification with glass, the resistance was reduced to about 50 MPa. Sorption and solubility values of the materials (19.01 ÷ 21.23 µg/mm3 and 0.42 ÷ 1.12 µg/mm3, respectively) complied with the safety limits imposed by ISO standard. Modified resins were capable of releasing fluoride ions, and the maximum releasing effect was observed after 14 days of incubation. Both the modified resins, after four days of contact with human gingival fibroblasts, exhibited moderate cytotoxic properties. CONCLUSIONS: The experimental results showed that modification of methacrylate resin, used in 3D printing technology, with bioactive glasses produces novel dental materials that possess desirable bioactive properties. The findings of this study indicate the potential ability of modified polymethacrylate resins to release fluoride ions in the oral cavity environment. The modified materials are characterized with a moderate decrease in physical properties and mild cytotoxicity on direct contact with human fibroblasts.
See more in PubMed
Fousová M., Vojtěch D., Kubásek J., Machová M., Dvorský D. 3D Printing as an Alternative to Casting, Forging and Machining Technologies? Manuf. Technol. 2015;15:809–814. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/5/809. DOI
Chin S.Y., Dikshit V., Priyadarshini B.M., Zhang Y. Powder-Based 3D Printing for the Fabrication of Device with Micro and Mesoscale Features. Micromachines. 2020;11:658. doi: 10.3390/mi11070658. PubMed DOI PMC
Zaharia C., Gabor A.-G., Gavrilovici A., Negruțiu M.-L., Stan A.T., Idorași L., Sinescu C. Digital Dentistry—3D Printing Applications. J. Interdiscip. Med. 2017;2:50–53. doi: 10.1515/jim-2017-0032. DOI
Venkataganakarthik E., Ganapathy D., Visalakshi R.M. Awareness of stereolithography among dental students. Drug Invent. Today. 2019;12:1013–1017.
Quan H., Zhang T., Xu H., Luo S., Nie J., Zhu X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020;5:110–115. doi: 10.1016/j.bioactmat.2019.12.003. PubMed DOI PMC
Chung Y.J., Park J.M., Kim T.H., Ahn J.S., Cha H.S., Lee J.H. 3D Printing of Resin Material for Denture Artificial Teeth: Chipping and Indirect Tensile Fracture Resistance. Materials. 2018;11:1798. doi: 10.3390/ma11101798. PubMed DOI PMC
Anadioti E., Musharbash L., Blatz M.B., Papavasiliou G., Kamposiora P. 3D printed complete removable dental prostheses: A narrative review. BMC Oral Health. 2020;20:343. doi: 10.1186/s12903-020-01328-8. PubMed DOI PMC
Revilla-León M., Matthew M.J., Zandinejad A., Özcan M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J. Esthet. Restor. Dent. 2018;31:1–7. doi: 10.1111/jerd.12438. PubMed DOI
Suralik K.M., Sun J., Chen C.Y., Lee S.J. Effect of Fabrication Method on Fracture Strength of Provisional Implant-Supported Fixed Dental Prostheses. Prosthesis. 2020;2:325–332. doi: 10.3390/prosthesis2040030. DOI
Piironen K., Haapala M., Talman V., Järvinen P., Sikanen T. Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices. Lab Chip. 2020;20:2372. doi: 10.1039/D0LC00114G. PubMed DOI
Kumar M. Ph.D. Dissertation. The Tamilnadu Dr. M.G.R. Medical University; Tamil Nadu, India: 2019. Cytotoxicity of 3d Printed Materials-An In-Vitro Study.
Ahamed S.F., Kumar M., Vijayakumar R.K., Apros A.S., Kanna A.S., Indrapriyadharshini K. Cytotoxic evaluation of directly 3D printed aligners and Invisalign. Eur. J. Mol. Clin. Med. 2020;7:1129–1141.
Tiwari S., Kenchappa M., Bhayya D., Gupta S., Saxena S., Satyarth S., Singh A., Gupta M. Antibacterial Activity and Fluoride Release of Glass-Ionomer Cement, Compomer and Zirconia Reinforced Glass-Ionomer Cement. J. Clin. Diagn. Res. 2016;10:ZC90–ZC93. doi: 10.7860/JCDR/2016/16282.7676. PubMed DOI PMC
De Caluwé T., Vercruysse C.W.J., Ladik I., Convents R., Declerc H., Marten L.C., Verbeeck R.M.H. Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility. Dent. Mater. 2017;33:e180–e203. doi: 10.1016/j.dental.2017.01.007. PubMed DOI
Raszewski Z., Nowakowska D., Wieckiewicz W., Nowakowska-Toporowska A. Release and Recharge of Fluoride Ions from Acrylic Resin Modified with Bioactive Glass. Polymers. 2021;13:1054. doi: 10.3390/polym13071054. PubMed DOI PMC
Tappa K., Jammalamadaka U. Novel Biomaterials Used in Medical 3D Printing Techniques. J. Funct. Biomater. 2018;9:17. doi: 10.3390/jfb9010017. PubMed DOI PMC
Augustin M.M., Joke D., Bourleyi S.I., Shenda L.P., Fidele N.B., Gabriel B.B., Pierre S.N., Kazadi E.K., Ediz E.I., Pierrot K.N., et al. Risks Factors of Caries and Periodontal Diseases in the Patients, after 5 Years Use a Partial Removable Denture. Open J. Stomatol. 2016;6:185–192. doi: 10.4236/ojst.2016.68024. DOI
Raszewski Z., Nowakowska-Toporowska A., Weżgowiec J., Nowakowska D., Więckiewicz W. Influence of silanized silica and silanized feldspar addition on the mechanical behavior of polymethyl methacrylate resin denture teeth. J. Prosthet. Dent. 2020;123:647.e1–647.e7. doi: 10.1016/j.prosdent.2019.12.007. PubMed DOI
International Organization for Standardization . EN ISO 4049. Dentistry—Polymer-Based Restorative Materials. ISO; London, UK: 2019.
International Organization for Standardization . EN ISO 20795-1. Base Polymers—Part 1: Denture Base Polymers. ISO; London, UK: 2013.
González G., Barualdi D., Martinengo C., Angelini A., Chiappone A., Roppolo I., Pirri C.F., Frascella F. Materials Testing for the Development of Biocompatible Devices through Vat-Polymerization 3D Printing. Nanomaterials. 2020;10:1788. doi: 10.3390/nano10091788. PubMed DOI PMC
Ünal E.I., Kenar A., Aksu M.L., Taştekin M. Spectrophotometric methods for the determination of fluoride ion using indole-3-acetic acid interaction with iron(III) Turk. J. Chem. 2019;43:415–423. doi: 10.3906/kim-1807-135. DOI
Saczko J., Dominiak M., Kulbacka J., Chwiłkowska A., Krawczykowska H. A simple and established method of tissue culture of human gingival fibroblasts for gingival augmentation. Folia Histochem. Cytobiol. 2008;46:117–119. doi: 10.2478/v10042-008-0017-4. PubMed DOI
Margolis H.C., Moreno E.C., Murphy B.J. Effect of low levels of fluoride in solution on enamel demineralization in vitro. J. Dent. Res. 1986;65:23–29. doi: 10.1177/00220345860650010301. PubMed DOI
Arbabzadeh-Zavareh F., Gibbs T., Meyers I.A., Bouzari M., Mortazavi S., Walsh L.J. Recharge pattern of contemporary glass ionomer restoratives. Dent. Res. J. (Isfahan) 2012;9:139–145. doi: 10.4103/1735-3327.95226. PubMed DOI PMC
Checherita L., Beldiman M.A., Stamatin O., Foia U., Forna N. Aspects on Structure of Materials Used for Different Types of Occlusal Splints. Rev. Chim. 2013;64:864–867.
Parreira-Lovoa J.F., de Camargo I.L., Erberelia R., Moraisa M.M., Fortulana C.A. Vat Photopolymerization Additive Manufacturing Resins: Analysis and Case Study. Mater. Res. 2020;23:e20200010. doi: 10.1590/1980-5373-MR-2020-0010. DOI
Kamalak H., Kamalak A., Taghizadehghalehjoughi A., Hacımüftüoğlu A., Nalcı K.A. Cytotoxic and biological effects of bulk fill composites on rat cortical neuron cells. Odontology. 2018;106:377–388. doi: 10.1007/s10266-018-0354-5. PubMed DOI PMC
Lee M.J., Kim M.J., Kwon J.S. Lee, S.B.; Kim, K.M. Cytotoxicity of Light-Cured Dental Materials according to Different Sample Preparation Methods. Materials. 2017;10:288. doi: 10.3390/ma10030288. PubMed DOI PMC
Korsuwannawong S., Srichan R., Vajrabhaya L.O. Cytotoxicity evaluation of self-etching dentine bonding agents in a cell culture perfusion condition. Eur. J. Dent. 2012;6:408–414. doi: 10.1055/s-0039-1698980. PubMed DOI PMC
Puškar T., Trifković B., Koprivica D.Đ., Kojić V., Jevremović A., Mirković S. In vitro cytotoxicity assessment of 3d printed polymer based epoxy resin intended for use in dentistry. Vojn. Pregl. 2017;3:1–10. doi: 10.2298/VSP170721127P. DOI
Lin C.H., Lin Y.M., Lai Y.L., Lee S.Y. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis EMA, UDMA, and TEGDMA. J. Prosthet. Dent. 2020;123:349–354. doi: 10.1016/j.prosdent.2019.05.002. PubMed DOI
Popal M., Volk J., Leyhausen G., Geurtsen W. Cytotoxic and genotoxic potential of the type I photo initiators BAPO and TPO on human oral keratinocytes and V79 fibroblasts. Dent. Mater. 2018;34:1783–1796. doi: 10.1016/j.dental.2018.09.015. PubMed DOI
Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teeth
Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components