Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36662060
PubMed Central
PMC9862696
DOI
10.3390/jfb14010013
PII: jfb14010013
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, bioactive glass, ion release, mechanical properties,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: The aim of this study was to create a 3D printing material with bioactive properties that potentially could be used for a transparent removable orthodontic appliance. MATERIALS AND METHODS: To acrylic monomers, four bioactive glasses at 10% concentration were added, which release Ca, P, Si and F ions. The materials were printed on a 3D printer and tested for flexural strength (24 h and 30 days), sorption and solubility (7 days), ion release to artificial saliva pH = 4 and 7 (42 days) and cytotoxicity in the human fibroblast model. The released ions were determined by plasma spectrometry (Ca, P and Si ions) and ion-selective electrode (F measurement)s. RESULTS: The material obtained released Ca2+ and PO43- ions for a period of 42 days when using glass Biomin C at pH 4. The flexural strength depended on the direction in which the sample was printed relative to the 3D printer platform. Vertically printed samples had a resistance greater than 20%. The 10% Biomin C samples post-cured for 30 min with light had a survival rate of the cells after 72 h of 85%. CONCLUSIONS: Material for 3D printing with bioactive glass in its composition, which releases ions, can be used in the production of orthodontic aligners.
Zobrazit více v PubMed
Kessler A., Hickel R., Reymus M. 3D Printing in Dentistry-State of the Art. Oper. Dent. 2020;45:30–34. doi: 10.2341/18-229-L. PubMed DOI
Alshaikh A.A., Khattar A., Almindil I.A., Alsaif M.H., Akhtar S., Khan S.Q., Gad M.M. 3D-Printed Nanocomposite Denture-Base Resins: Effect of ZrO2 Nanoparticles on the Mechanical and Surface Properties In Vitro. Nanomaterials. 2022;12:2451. doi: 10.3390/nano12142451. PubMed DOI PMC
Gad M.M., Fouda S.M., Abualsaud R., Alshahrani F.A., Al-Thobity A.M., Khan S.Q., Akhtar S., Ateeq I.S., Helal M.A., Al-Harbi F.A. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J. Prosthodont. 2021;31:412–418. doi: 10.1111/jopr.13413. PubMed DOI
Lee J., Belles D., Gonzalez M., Kiat-Amnuay S., Dugarte A., Ontiveros J. Impact strength of 3D printed and conventional heat-cured and cold-cured denture base acrylics. Int. J. Prosthodont. 2022;35:240–244. doi: 10.11607/ijp.7246. PubMed DOI
Chen S., Yang J., Jia Y.G., Lu B., Ren L. A study of 3D-printable reinforced composite resin: PMMA modified with silver nanoparticles loaded cellulose nanocrystal. Materials. 2018;11:2444. doi: 10.3390/ma11122444. PubMed DOI PMC
Palucci R., Rosace G., Arrigo R., Malucelli G. Preparation and Characterization of 3D-Printed Biobased Composites Containing Micro- or Nanocrystalline Cellulose. Polymers. 2022;14:1886. doi: 10.3390/polym14091886. PubMed DOI PMC
Revilla-León M., Meyers M., Zandinejad A., Özcan M. A review on chemical composition, mechanical properties, and manufacturing workflow of additively manufactured current polymers for interim dental restorations. J. Esthet. Restor. Dent. 2018;31:12438. doi: 10.1111/jerd.12438. PubMed DOI
Altarazi A., Haider J., Alhotan A., Silikas N., Devlin H. Assessing the physical and mechanical properties of 3D printed acrylic material for denture base application. Dent. Mater. 2022;38:1841–1854. doi: 10.1016/j.dental.2022.09.006. PubMed DOI
Chenicheri S.R.U., Ramachandran R., Thomas V., Wood A. Insight into Oral Biofilm: Primary, Secondary and Residual Caries and Phyto-Challenged Solutions. Open Dent. J. 2017;11:312–333. doi: 10.2174/1874210601711010312. PubMed DOI PMC
Bordbar-Khiabani A., Gasik M. Smart Hydrogels for Advanced Drug Delivery Systems. Int. J. Mol. Sci. 2022;23:3665. doi: 10.3390/ijms23073665. PubMed DOI PMC
Safavi M.S., Bordbar-Khiabani A., Khalil-Allafi J., Mozafari M., Visai L. Additive Manufacturing: An Opportunity for the Fabrication of Near-Net-Shape NiTi Implants. J. Manuf. Mater. Process. 2022;6:65. doi: 10.3390/jmmp6030065. DOI
Staffova M., Ondreáš F., Svatík J., Zbončák M., Jančář J., Lepcio P. 3D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical properties. Polym. Test. 2022;108:107499. doi: 10.1016/j.polymertesting.2022.107499. DOI
Bagheri A., Jin J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019;1:593–611. doi: 10.1021/acsapm.8b00165. DOI
Raszewski Z., Chojnacka K., Mikulewicz M. Preparation and characterization of acrylic resins with bioactive glasses. Sci. Rep. 2022;12:16624. doi: 10.1038/s41598-022-20840-1. PubMed DOI PMC
Raszewski Z., Nowakowska D., Wieckiewicz W., Nowakowska-Toporowska A. The effect of chlorhexidine disinfectant gels with anti-discoloration systems on color and mechanical properties of PMMA resin for dental applications. Polymers. 2021;13:1800. doi: 10.3390/polym13111800. PubMed DOI PMC
González G., Barualdi D., Martinengo C., Angelini A., Chiappone A., Roppolo I., Pirri C.F., Frascella F. Materials Testing for the Development of Biocompatible Devices through Vat-Polymerization 3D Printing. Nanomaterials. 2020;10:1788. doi: 10.3390/nano10091788. PubMed DOI PMC
Dentistry—Polymer-Based Restorative Materials. ISO; London, UK: 2019.
Saczko J.M., Dominiak J., Kulbacka A., Chwiłkowska H., Krawczykowska H. A simple and established method of tissue culture of human gingival fibroblasts for gingival augmentation. Folia Histochem. Cytobiol. 2008;46:117–119. doi: 10.2478/v10042-008-0017-4. PubMed DOI
Raszewski Z., Kulbacka J., Nowakowska-Toporowska A. Mechanical Properties, Cytotoxicity, and Fluoride Ion Release Capacity of Bioactive Glass-Modified Methacrylate Resin Used in Three-Dimensional PrintingTechnology. Materials. 2022;15:1133. doi: 10.3390/ma15031133. PubMed DOI PMC
Reyes M., Bataller A., Cabrera J., Velasco G., Juan M., Castillo J. A study of tensile and bending properties of 3D-printed biocompatible materials used in dental appliances. J. Mater. Sci. 2022:57, 2953–2968. doi: 10.1007/s10853-021-06811-3. DOI
Perea-Lowery L., Gibreel M., Vallittu P.K., Lassila L.V. 3D-Printed vs. Heat-Polymerizing and Autopolymerizing Denture Base Acrylic Resins. Materials. 2021;14:5781. doi: 10.3390/ma14195781. PubMed DOI PMC
Zeidan A.A.E., Sherif A.F., Baraka Y., Abualsaud R., Abdelrahim R.A., Gad M.M., Helal M.A. Evaluation of the Effect of Different Construction Techniques of CAD-CAM Milled, 3D-Printed, and Polyamide Denture Base Resins on Flexural Strength: An In Vitro Comparative Study. J. Prosthodont. :2022. doi: 10.1111/jopr.13514. PubMed DOI
Aati S., Akram Z., Shrestha B., Patel J., Shih B., Shearston K., Ngo H., Fawzy A. Effect of post-curing light exposure time on the physico-mechanical properties and cytotoxicity of 3D-printed denture base material. Dent Mater. 2022;38:57–67. doi: 10.1016/j.dental.2021.10.011. PubMed DOI
Al-Eesa N.A., Fernandes S.D., Hill R.G., Wong F.S.L., Jargalsaikhan U., Shahid S. Remineralising fluorine containing bioactive glass composites. Dent Mater. 2021;37:672–681. doi: 10.1016/j.dental.2021.01.004. PubMed DOI
Al-Eesaa N.A., Johal A., Hill R.G., Wong F.S.L. Fluoride-containing bioactive glass composite for orthodontic adhesives: Apatite formation properties. Dent. Mater. 2021;34:1127–1133. doi: 10.1016/j.dental.2018.04.009. PubMed DOI
Liu J., Rawlinson S.C.F., Hill R.G., Fortune F. Fluoride incorporation in high-phosphate-containing bioactive glasses and in vitro osteogenic, angiogenic, and antibacterial effects. Dent. Mater. 2016;32:e221–e237. doi: 10.1016/j.dental.2016.07.003. PubMed DOI
Tiskaya M., Shahid S., Gillam D., Hill R.G. The use of bioactive glass (BAG) in dental composites: Critical review. Dent. Mater. 2021;37:296–310. doi: 10.1016/j.dental.2020.11.015. PubMed DOI
Park J.-H., Lee H., Kim J.-W. Cytocompatibility of 3D printed dental materials for temporary restorations on fibroblasts. BMC Oral Health. 2020;20:157. doi: 10.1186/s12903-020-01150-2. PubMed DOI PMC
d’Apuzzo F., Nucci L., Strangio B.M., Inchingolo A.D., Dipalma G., Minervini G., Perillo L., Grassia V. Dento-Skeletal Class III Treatment with Mixed Anchored Palatal Expander: A Systematic Review. Appl. Sci. 2022;12:4646. doi: 10.3390/app12094646. DOI
Reddy L.K.V., Madithati P., Narapureddy B.R., Ravula S.R., Vaddamanu S.K., Alhamoudi F.H., Minervini G., Chaturvedi S. Perception about Health Applications (Apps) in Smartphones towards Telemedicine during COVID-19: A Cross-Sectional Study. J. Pers. Med. 2022;12:1920. doi: 10.3390/jpm12111920. PubMed DOI PMC
Minervini G., Russo D., Herford A.S., Gorassini F., Meto A., D’Amico C., Cervino G., Cicciù M., Fiorillo L. Teledentistry in the Management of Patients with Dental and Temporomandibular Disorders. Biomed. Res Int. 2022;2022:7091153. doi: 10.1155/2022/7091153. PubMed DOI PMC
Fernandes Fagundes N.C., Minervini G., Furió Alonso B., Nucci L., Grassia V., d’Apuzzo F., Puigdollers A., Perillo L., Flores-Mir C. Patient-reported outcomes while managing obstructive sleep apnea with oral appliances: A scoping review. J. Evid. -Based Dent. Pract. 2022. 101786. in press . PubMed DOI
Effects of Surface Preparation Methods on the Color Stability of 3D-Printed Dental Restorations