• This record comes from PubMed

Preparation and characterization of acrylic resins with bioactive glasses

. 2022 Oct 05 ; 12 (1) : 16624. [epub] 20221005

Language English Country Great Britain, England Media electronic

Document type Journal Article

Links

PubMed 36198737
PubMed Central PMC9534886
DOI 10.1038/s41598-022-20840-1
PII: 10.1038/s41598-022-20840-1
Knihovny.cz E-resources

This study aimed to prepare a bioactive acrylic material by adding different types of glasses. Commercially available polymerized acrylic resin was mixed with 10% of four different types of glasses in the powder form and cured. Flexural strength, sorption, and solubility of the samples were tested according to ISO 20795-1:2013. The total number of samples used in the tests were 60. The materials were placed in artificial saliva of pH 4 and 7, and elution was performed for 0, 1, 28, and 42 days. The collected samples were analyzed using inductively coupled plasma atomic emission spectrometry to detect Ca, P, and Si ions and using ion chromatography to detect F ions. The materials obtained after modification with glasses showed lower compressive strength compared with pure polymethyl methacrylate but met the standard requirements. Two glass types showed higher solubility values compared with the value defined by the ISO standard. Biomin C and S53P4 released Ca, P, and Si ions, respectively, after 42 days in artificial saliva. Acrylic resins modified with 10% Biomin C and S53P4 glasses can be a valuable source of Ca and P ions under acid conditions for 28 and 42 days.

See more in PubMed

Gharechahi J, Asadzadeh N, Shahabian F, Gharechahi M. Flexural strength of acrylic resin denture bases processed by two different methods. J. Dent. Res. Dent. Clin. Dent. Prospects. 2014;8(3):148–152. PubMed PMC

Singh RD, Gautam R, Siddhartha R, Singh BP, Chand P, Sharma VP, Jurel SK. High-performance liquid chromatographic determination of the residual monomer released from heat-cured acrylic resin. An in vivo study. J. Prosthodont. 2013;22(5):358–361. doi: 10.1111/jopr.12004. PubMed DOI

Jang DE, Ji-Lee JY, Jang HS, Lee JJ, Son MK. Color stability, water sorption, and cytotoxicity of thermoplastic acrylic resin for non-metal clasp denture. J. Adv. Prosthodont. 2015;7(4):278–287. doi: 10.4047/jap.2015.7.4.278. PubMed DOI PMC

Preoteasa E, Tâncu AM, Iosif L, Melescanu Imre M, Murariu-Măgureanu C, Preoteasa CT. Salivary changes related to systemic diseases in edentulous patients. J. Med. Life. 2014;7(4):577–580. PubMed PMC

Méndez Silva JE, Madrid CCM, Tirado Amador LR. Saliva and alternative adhesive systems for complete dentures. Rev. Fac. Odontol. Univ. Antioq. 2013;25(1):208–218.

Vert M, Doi Y, Hellwich KH, Hess M, Hodge Ph, Kubisa P, Rinaudo M, Schué F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012) Pure Appl. Chem. 2012;84(2):377–410. doi: 10.1351/PAC-REC-10-12-04. DOI

Raszewski Z. Dynamics of different ion release from denture-base acrylic resins and their mechanical properties after the addition of bioactive materials. Saudi Dent. J. 2021;33(8):1071–1077. doi: 10.1016/j.sdentj.2021.05.001. PubMed DOI PMC

Körolu A, Sahin O, Kürkçüoğlu I, Dede DÖ, Özdemir T, Hazer B. Effect of the incorporation of titanium dioxide on mechanical and thermal properties of acrylic resins. J. Appl. Oral. Sci. 2016;24(6):590–596. doi: 10.1590/1678-775720160185. PubMed DOI PMC

Ashour M, El-Shennawy M, Althomali Y, Omar A. Effect of the incorporation of titanium dioxide nanoparticles on mechanical and Physical Properties on two different types of Acrylic Resin Denture Base. World J. Nano Sci. Eng. 2016;6:111–119. doi: 10.4236/wjnse.2016.63011. DOI

Liu J, Rawlinson SCF, Hill RG, Fortune F. Fluoride incorporation in high-phosphate-containing bioactive glasses and in vitro osteogenic, angiogenic, and antibacterial effects. Dent. Mater. 2016;32(10):e221–237. doi: 10.1016/j.dental.2016.07.003. PubMed DOI

Bajunaid SO, Baras BH, Weir MD, Xu HHK. Acrylic denture resin material with antibacterial and protein repelling properties for the prevention of denture stomatitis. Polymers. 2022;14:230. doi: 10.3390/polym14020230. PubMed DOI PMC

Bettencourt AF, Feliz M, Sousa C, Gonçalves L, Neves NCB. Na acrylic reline resin loaded with chlorhexidine: insights into drug release. Rev. Estomatol. Med. Dent. Cir. Maxilofac. 2016;57(3):125–130.

Rijo I, Pedro D, Costa J, Bettencourt AF, Portugal J, Neves MCB. Chlorhexidine loading of acrylic reline resins—Microhardness and flexural strength after thermal aging. Rev. Port. Estomatol. Med. Dent. Cir. Maxilofac. 2018;59(3):154–161.

Al-Eesaa NA, Diniz Fernandes SS, Hill RG, Wong FSL, Jargalsaikhan U, Shahid S. Reineralising fluorine-containing bioactive glass composites. Dent. Mat. 2021;3(7):672–681. doi: 10.1016/j.dental.2021.01.004. PubMed DOI

Bingel L, Groh D, Karpukhina N, Brauer DS. Influence of dissolution medium pH on ion release and apatite formation of Bioglass®45S5. Mater. Lett. 2015;143:279–282. doi: 10.1016/j.matlet.2014.12.124. DOI

Liu SY, Tonggu L, Niu LN, Gong SQ, Fan B, Wang L, Zhao JH, Huang C, Pashley DH, Tay FR. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomized clinical trial. Sci. Rep. 2016;23(6):21882. doi: 10.1038/srep21882. PubMed DOI PMC

Ilie N. Comparative effect of self-or dual-curing on polymerization kinetics and mechanical properties in a novel, dental-resin-based composite with alkaline filler. Materials (Basel). 2018;11(1):108–113. doi: 10.3390/ma11010108. PubMed DOI PMC

Al-Eesaa NA, Johal A, Hill RG, Wong FSL. Fluoride-containing bioactive glass composite for orthodontic adhesives: apatite formation properties. Dent. Mater. 2018;34(8):1127–1133. doi: 10.1016/j.dental.2018.04.009. PubMed DOI

Khvostenko D, Mitchell JC, Hilton TJ, Ferracane JL, Kruzic JJ. Mechanical performance of novel bioactive glass containing dental restorative composites. Dent. Mater. 2013;29(11):1139–1148. doi: 10.1016/j.dental.2013.08.207. PubMed DOI PMC

Tiskaya M, Al-Eesa NA, Wong FSL, Hill RG. Characterization of the bioactivity of two commercial composites. Dent. Mat. 2019;35(12):1757–1768. doi: 10.1016/j.dental.2019.10.004. PubMed DOI

Pedone A, Chen X, Hill RG, Karpukhina N. Molecular dynamics investigation of halide-containing phospho-silicate bioactive glasses. J. Phys. Chem. 2018;122(11):2940–2948. doi: 10.1021/acs.jpcb.8b00547. PubMed DOI

Chen X, Hill R, Karpukhina N. Chlorapatite glass ceramics. Int. J. Appl. Glass Sci. 2014;5(3):207–216. doi: 10.1111/ijag.12082. DOI

ISO 20795-1:2013(en), Dentistry—Denture base polymers (2013).

Jensen CS, Lisby S, Baadsgaard O, Byrialsen K, Menné T. Release of nickel ions from stainless steel alloys used in dental braces and their patch test reactivity in nickel-sensitive individuals. Contact Dermat. 2003;48(6):300–304. doi: 10.1034/j.1600-0536.2003.00118.x. PubMed DOI

Ghoveizi R, Tavakolizadeh S, Raftarifarimani A, Barzanjic A, Afshari Z. Comparative study of flexural strength of four acrylic resins before and after the thermocycling process. J. Dent. School. 2018;36(3):95–98.

Mneimne M, Hill RG, Bushby A, Brauer DS. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomater. 2011;7(4):1827–1830. doi: 10.1016/j.actbio.2010.11.037. PubMed DOI

Saini R, Kotian R, Madhyastha P, Srikant N. Comparative study of the sorption and solubility of heat-cure and self-cure acrylic resins in different solutions. Indian J. Dent. Res. 2016;27(3):288–294. doi: 10.4103/0970-9290.186234. PubMed DOI

AL-Omari AW, Kassab NH, Mohammed NZ. Water sorption and solubility of two acrylic resin denture base materials polymerized by infrared radiation. Al–Rafidain Dent. J. 2019;19(1):20–31. doi: 10.33899/rden.2019.126003.1003. DOI

Zidan S, Silikas N, Haider J, Yates J. Long-term sorption and Solubility of Zirconia-Impregnated PMMA Nanocomposite in water and Artificial Saliva. Materials. 2020;13(17):3732–3735. doi: 10.3390/ma13173732. PubMed DOI PMC

Edén M. The Split Network Analysis for exploring composition–structure correlations in Multicomponent Glasses: I. Rationalization of the bioactivity-composition trends of bioglasses. J. Non-Cryst. Solids. 2011;357(6):1595–1602. doi: 10.1016/j.jnoncrysol.2010.11.098. DOI

O’Donnell MD, Watts SJ, Hill RG, Law RV. Effect of the phosphate content on the bioactivity of soda-lime-phosphosilicate glasses. J. Mater. Sci. Mater. Med. 2009;20:1611–1618. doi: 10.1007/s10856-009-3732-2. PubMed DOI

Ajaj-Alkordy NM, Alsaadi MH. Elastic modulus and flexural strength comparisons of high impact and traditional denture base acrylic resins. Saudi Dent. J. 2014;26(1):15–18. doi: 10.1016/j.sdentj.2013.12.005. PubMed DOI PMC

Tiskaya M, Shahid S, Gillam D, Hill RG. The use of bioactive glass (BAG) in dental composites: Critical review. Dent. Mater. 2021;37(2):296–310. doi: 10.1016/j.dental.2020.11.015. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...