Preparation and characterization of acrylic resins with bioactive glasses
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
36198737
PubMed Central
PMC9534886
DOI
10.1038/s41598-022-20840-1
PII: 10.1038/s41598-022-20840-1
Knihovny.cz E-resources
- MeSH
- Acrylic Resins * chemistry MeSH
- Saliva, Artificial MeSH
- Polymethyl Methacrylate * chemistry MeSH
- Powders MeSH
- Materials Testing MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acrylic Resins * MeSH
- Saliva, Artificial MeSH
- Polymethyl Methacrylate * MeSH
- Powders MeSH
This study aimed to prepare a bioactive acrylic material by adding different types of glasses. Commercially available polymerized acrylic resin was mixed with 10% of four different types of glasses in the powder form and cured. Flexural strength, sorption, and solubility of the samples were tested according to ISO 20795-1:2013. The total number of samples used in the tests were 60. The materials were placed in artificial saliva of pH 4 and 7, and elution was performed for 0, 1, 28, and 42 days. The collected samples were analyzed using inductively coupled plasma atomic emission spectrometry to detect Ca, P, and Si ions and using ion chromatography to detect F ions. The materials obtained after modification with glasses showed lower compressive strength compared with pure polymethyl methacrylate but met the standard requirements. Two glass types showed higher solubility values compared with the value defined by the ISO standard. Biomin C and S53P4 released Ca, P, and Si ions, respectively, after 42 days in artificial saliva. Acrylic resins modified with 10% Biomin C and S53P4 glasses can be a valuable source of Ca and P ions under acid conditions for 28 and 42 days.
See more in PubMed
Gharechahi J, Asadzadeh N, Shahabian F, Gharechahi M. Flexural strength of acrylic resin denture bases processed by two different methods. J. Dent. Res. Dent. Clin. Dent. Prospects. 2014;8(3):148–152. PubMed PMC
Singh RD, Gautam R, Siddhartha R, Singh BP, Chand P, Sharma VP, Jurel SK. High-performance liquid chromatographic determination of the residual monomer released from heat-cured acrylic resin. An in vivo study. J. Prosthodont. 2013;22(5):358–361. doi: 10.1111/jopr.12004. PubMed DOI
Jang DE, Ji-Lee JY, Jang HS, Lee JJ, Son MK. Color stability, water sorption, and cytotoxicity of thermoplastic acrylic resin for non-metal clasp denture. J. Adv. Prosthodont. 2015;7(4):278–287. doi: 10.4047/jap.2015.7.4.278. PubMed DOI PMC
Preoteasa E, Tâncu AM, Iosif L, Melescanu Imre M, Murariu-Măgureanu C, Preoteasa CT. Salivary changes related to systemic diseases in edentulous patients. J. Med. Life. 2014;7(4):577–580. PubMed PMC
Méndez Silva JE, Madrid CCM, Tirado Amador LR. Saliva and alternative adhesive systems for complete dentures. Rev. Fac. Odontol. Univ. Antioq. 2013;25(1):208–218.
Vert M, Doi Y, Hellwich KH, Hess M, Hodge Ph, Kubisa P, Rinaudo M, Schué F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012) Pure Appl. Chem. 2012;84(2):377–410. doi: 10.1351/PAC-REC-10-12-04. DOI
Raszewski Z. Dynamics of different ion release from denture-base acrylic resins and their mechanical properties after the addition of bioactive materials. Saudi Dent. J. 2021;33(8):1071–1077. doi: 10.1016/j.sdentj.2021.05.001. PubMed DOI PMC
Körolu A, Sahin O, Kürkçüoğlu I, Dede DÖ, Özdemir T, Hazer B. Effect of the incorporation of titanium dioxide on mechanical and thermal properties of acrylic resins. J. Appl. Oral. Sci. 2016;24(6):590–596. doi: 10.1590/1678-775720160185. PubMed DOI PMC
Ashour M, El-Shennawy M, Althomali Y, Omar A. Effect of the incorporation of titanium dioxide nanoparticles on mechanical and Physical Properties on two different types of Acrylic Resin Denture Base. World J. Nano Sci. Eng. 2016;6:111–119. doi: 10.4236/wjnse.2016.63011. DOI
Liu J, Rawlinson SCF, Hill RG, Fortune F. Fluoride incorporation in high-phosphate-containing bioactive glasses and in vitro osteogenic, angiogenic, and antibacterial effects. Dent. Mater. 2016;32(10):e221–237. doi: 10.1016/j.dental.2016.07.003. PubMed DOI
Bajunaid SO, Baras BH, Weir MD, Xu HHK. Acrylic denture resin material with antibacterial and protein repelling properties for the prevention of denture stomatitis. Polymers. 2022;14:230. doi: 10.3390/polym14020230. PubMed DOI PMC
Bettencourt AF, Feliz M, Sousa C, Gonçalves L, Neves NCB. Na acrylic reline resin loaded with chlorhexidine: insights into drug release. Rev. Estomatol. Med. Dent. Cir. Maxilofac. 2016;57(3):125–130.
Rijo I, Pedro D, Costa J, Bettencourt AF, Portugal J, Neves MCB. Chlorhexidine loading of acrylic reline resins—Microhardness and flexural strength after thermal aging. Rev. Port. Estomatol. Med. Dent. Cir. Maxilofac. 2018;59(3):154–161.
Al-Eesaa NA, Diniz Fernandes SS, Hill RG, Wong FSL, Jargalsaikhan U, Shahid S. Reineralising fluorine-containing bioactive glass composites. Dent. Mat. 2021;3(7):672–681. doi: 10.1016/j.dental.2021.01.004. PubMed DOI
Bingel L, Groh D, Karpukhina N, Brauer DS. Influence of dissolution medium pH on ion release and apatite formation of Bioglass®45S5. Mater. Lett. 2015;143:279–282. doi: 10.1016/j.matlet.2014.12.124. DOI
Liu SY, Tonggu L, Niu LN, Gong SQ, Fan B, Wang L, Zhao JH, Huang C, Pashley DH, Tay FR. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomized clinical trial. Sci. Rep. 2016;23(6):21882. doi: 10.1038/srep21882. PubMed DOI PMC
Ilie N. Comparative effect of self-or dual-curing on polymerization kinetics and mechanical properties in a novel, dental-resin-based composite with alkaline filler. Materials (Basel). 2018;11(1):108–113. doi: 10.3390/ma11010108. PubMed DOI PMC
Al-Eesaa NA, Johal A, Hill RG, Wong FSL. Fluoride-containing bioactive glass composite for orthodontic adhesives: apatite formation properties. Dent. Mater. 2018;34(8):1127–1133. doi: 10.1016/j.dental.2018.04.009. PubMed DOI
Khvostenko D, Mitchell JC, Hilton TJ, Ferracane JL, Kruzic JJ. Mechanical performance of novel bioactive glass containing dental restorative composites. Dent. Mater. 2013;29(11):1139–1148. doi: 10.1016/j.dental.2013.08.207. PubMed DOI PMC
Tiskaya M, Al-Eesa NA, Wong FSL, Hill RG. Characterization of the bioactivity of two commercial composites. Dent. Mat. 2019;35(12):1757–1768. doi: 10.1016/j.dental.2019.10.004. PubMed DOI
Pedone A, Chen X, Hill RG, Karpukhina N. Molecular dynamics investigation of halide-containing phospho-silicate bioactive glasses. J. Phys. Chem. 2018;122(11):2940–2948. doi: 10.1021/acs.jpcb.8b00547. PubMed DOI
Chen X, Hill R, Karpukhina N. Chlorapatite glass ceramics. Int. J. Appl. Glass Sci. 2014;5(3):207–216. doi: 10.1111/ijag.12082. DOI
ISO 20795-1:2013(en), Dentistry—Denture base polymers (2013).
Jensen CS, Lisby S, Baadsgaard O, Byrialsen K, Menné T. Release of nickel ions from stainless steel alloys used in dental braces and their patch test reactivity in nickel-sensitive individuals. Contact Dermat. 2003;48(6):300–304. doi: 10.1034/j.1600-0536.2003.00118.x. PubMed DOI
Ghoveizi R, Tavakolizadeh S, Raftarifarimani A, Barzanjic A, Afshari Z. Comparative study of flexural strength of four acrylic resins before and after the thermocycling process. J. Dent. School. 2018;36(3):95–98.
Mneimne M, Hill RG, Bushby A, Brauer DS. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomater. 2011;7(4):1827–1830. doi: 10.1016/j.actbio.2010.11.037. PubMed DOI
Saini R, Kotian R, Madhyastha P, Srikant N. Comparative study of the sorption and solubility of heat-cure and self-cure acrylic resins in different solutions. Indian J. Dent. Res. 2016;27(3):288–294. doi: 10.4103/0970-9290.186234. PubMed DOI
AL-Omari AW, Kassab NH, Mohammed NZ. Water sorption and solubility of two acrylic resin denture base materials polymerized by infrared radiation. Al–Rafidain Dent. J. 2019;19(1):20–31. doi: 10.33899/rden.2019.126003.1003. DOI
Zidan S, Silikas N, Haider J, Yates J. Long-term sorption and Solubility of Zirconia-Impregnated PMMA Nanocomposite in water and Artificial Saliva. Materials. 2020;13(17):3732–3735. doi: 10.3390/ma13173732. PubMed DOI PMC
Edén M. The Split Network Analysis for exploring composition–structure correlations in Multicomponent Glasses: I. Rationalization of the bioactivity-composition trends of bioglasses. J. Non-Cryst. Solids. 2011;357(6):1595–1602. doi: 10.1016/j.jnoncrysol.2010.11.098. DOI
O’Donnell MD, Watts SJ, Hill RG, Law RV. Effect of the phosphate content on the bioactivity of soda-lime-phosphosilicate glasses. J. Mater. Sci. Mater. Med. 2009;20:1611–1618. doi: 10.1007/s10856-009-3732-2. PubMed DOI
Ajaj-Alkordy NM, Alsaadi MH. Elastic modulus and flexural strength comparisons of high impact and traditional denture base acrylic resins. Saudi Dent. J. 2014;26(1):15–18. doi: 10.1016/j.sdentj.2013.12.005. PubMed DOI PMC
Tiskaya M, Shahid S, Gillam D, Hill RG. The use of bioactive glass (BAG) in dental composites: Critical review. Dent. Mater. 2021;37(2):296–310. doi: 10.1016/j.dental.2020.11.015. PubMed DOI
Bioactive Glass-Enhanced Resins: A New Denture Base Material
Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components