• This record comes from PubMed

Bioactive Glass-Enhanced Resins: A New Denture Base Material

. 2023 Jun 13 ; 16 (12) : . [epub] 20230613

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

BACKGROUND: The creation of the denture base material with bioactive properties that releases ions and produces hydroxyapatite. METHODS: Acrylic resins were modified by the addition of 20% of four types of bioactive glasses by mixing with powders. Samples were subjected to flexural strength (1, 60 days), sorption and solubility (7 days), and ion release at pH 4 and pH 7 for 42 days. Hydroxyapatite layer formation was measured using infrared. RESULTS: Biomin F glass-containing samples release fluoride ions for a period of 42 days (pH = 4; Ca = 0.62 ± 0.09; P = 30.47 ± 4.35; Si = 22.9 ± 3.44; F = 3.1 ± 0.47 [mg/L]). The Biomin C (contained in the acrylic resin releases (pH = 4; Ca = 41.23 ± 6.19; P = 26.43 ± 3.96; Si = 33.63 ± 5.04 [mg/L]) ions for the same period of time. All samples have a flexural strength greater than 65 MPa after 60 days. CONCLUSION: The addition of partially silanized bioactive glasses allows for obtaining a material that releases ions over a longer period of time. CLINICAL SIGNIFICANCE: This type of material could be used as a denture base material, helping to preserve oral health by preventing the demineralization of the residual dentition through the release of appropriate ions that serve as substrates for hydroxyapatite formation.

See more in PubMed

Bertolini M., Costa R.C., Barão V.A.R., Villar C.C., Retamal-Valdes B., Feres M., Silva Souza J.G. Oral Microorganisms and Biofilms: New Insights to Defeat the Main Etiologic Factor of Oral Diseases. Microorganisms. 2022;10:2413. doi: 10.3390/microorganisms10122413. PubMed DOI PMC

Mazurek-Popczyk J., Nowicki A., Arkusz K. Evaluation of biofilm formation on acrylic resins used to fabricate dental temporary restorations with the use of 3D printing technology. BMC Oral Health. 2022;22:442. doi: 10.1186/s12903-022-02488-5. PubMed DOI PMC

Nowakowska-Toporowska A., Malecka K., Raszewski Z., Wieckiewicz W. Changes in hardness of addition-polymerizing silicone-resilient denture liners after storage in artificial saliva. J. Prosthet. Dent. 2019;121:317–321. doi: 10.1016/j.prosdent.2018.05.002. PubMed DOI

Schnurr E., Paqué P.N., Attin T., Nanni P., Grossmann J., Holtfreter S., Bröker B.M., Kohler C., Diep B.A., Ribeiro A.A. Staphylococcus aureus interferes with streptococci spatial distribution and with protein expression of species within a polymicrobial oral biofilm. Antibiotics. 2021;10:116. doi: 10.3390/antibiotics10020116. PubMed DOI PMC

Holban A.M., Farcasiu C., Andrei O.C., Grumezescu A.M., Farcasiu A.T. Surface Modification to Modulate Microbial Biofilms-Applications in Dental Medicine. Materials. 2021;14:6994. doi: 10.3390/ma14226994. PubMed DOI PMC

Grande F., Tesini F., Pozzan M.C., Zamperoli E.M., Carossa M., Catapano S. Comparison of the Accuracy between Denture Bases Produced by Subtractive and Additive Manufacturing Methods: A Pilot Study. Prosthesis. 2022;4:151–159. doi: 10.3390/prosthesis4020015. DOI

Abebe G.M. Oral Biofilm and Its Impact on Oral Health, Psychological and Social Interaction. Int. J. Oral Dent. Health. 2021;7:127. doi: 10.23937/2469-5734/1510127. DOI

Collares F.M., Garcia I.M., Bohns F.R., Motta A., Melo M.A., Leitune V.C.B. Guanidine hydrochloride polymer additive to undertake ultraconservative resin infiltrant against Streptococcus mutans. Eur. Polym. J. 2020;133:109746. doi: 10.1016/j.eurpolymj.2020.109746. DOI

Chen H., Zhang B., Weir M.D., Homayounfar N., Fay G.G., Martinho F., Lei L., Bai Y., Hu T., Xu H.H.K. S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J. Dent. 2020;93:103278. doi: 10.1016/j.jdent.2020.103278. PubMed DOI

Wang L., Xie X., Qi M., Weir M.D., Reynolds M.A., Li C., Zhou C., Xu H.H.K. Effects of single species versus multispecies periodontal biofilms on the antibacterial efficacy of a novel bioactive Class-V nanocomposite. Dent. Mater. 2019;35:847–861. doi: 10.1016/j.dental.2019.02.030. PubMed DOI

Arun D., Adikari Mudiyanselage D., Gulam M.R., Liddell M., Monsur H.N.M., Sharma D. Does the Addition of Zinc Oxide Nanoparticles Improve the Antibacterial Properties of Direct Dental Composite Resins? A Systematic Review. Materials. 2021;14:40. doi: 10.3390/ma14010040. PubMed DOI PMC

Gad M.M., Abualsaud R., Rahoma A., Al-Thobity A.M., Akhtar S., Fouda S.M. Double-layered acrylic resin denture base with nanoparticle additions: An in vitro study. J. Prosthet. Dent. 2020;123:386. doi: 10.1016/j.prosdent.2020.08.021. PubMed DOI

Gad M.M., Al-Thobity A.M., Rahoma A., Abualsaud R., Al-Harbi F.A., Akhtar S. Reinforcement of PMMA denture base material with a mixture of ZrO2 nanoparticles and glass fibers. Int. J. Dent. 2019;2019:2489393. doi: 10.1155/2019/2489393. PubMed DOI PMC

de Castro D.T., Vilela Teixeira A.B., Alves O.L., dos Reis A.C. Cytotoxicity and Elemental Release of Dental Acrylic Resin Modified with Silver and Vanadium Based Antimicrobial Nanomater. J. Health Sci. 2021;23:12–17. doi: 10.17921/2447-8938.2021v23n1p12-17. DOI

Chen J., Peng H., Wang X., Shao F., Yuan Z., Han H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 2014;6:1879–1889. doi: 10.1039/C3NR04941H. PubMed DOI

Elwakiel N., El-Sayed Y., Elkafrawy H. Synthesis, characterization of Ag+ and Sn2+ complexes and their applications to improve the biological and mechanical properties of denture base materials. J. Mol. Struct. 2020;1219:128521. doi: 10.1016/j.molstruc.2020.128521. DOI

Ionescu A., Wutscher E., Brambilla E., Schneider-Feyrer S., Giessibl F.J., Hahnel S. Influence of surface properties of resin-based composites on in vitro Streptococcus mutans biofilm development. Eur. J. Oral Sci. 2012;120:458–465. doi: 10.1111/j.1600-0722.2012.00983.x. PubMed DOI

Chang Y.T., Chen G. Oral bacterial inactivation using a novel low-temperature atmospheric-pressure plasma device. J. Dent. Sci. 2016;11:65–71. doi: 10.1016/j.jds.2014.03.007. PubMed DOI PMC

Shibata Y., Yamashita Y., Tsuru K., Ishihara K., Fukazawa K., Ishikawa K. Preventive effects of a phospholipid polymer coating on PMMA on biofilm formation by oral streptococci. Appl. Surf. Sci. 2016;390:602–607. doi: 10.1016/j.apsusc.2016.08.108. DOI

Acosta L.D., Pérez-Camacho O., Acosta R., Escobar D.M., Gallardo C.A., Sánchez-Vargas L.O. Reduction of Candida albicans biofilm formation by coating polymethyl methacrylate denture bases with a photopolymerized film. J. Prosthet. Dent. 2020;124:605–613. doi: 10.1016/j.prosdent.2019.08.003. PubMed DOI

Raszewski Z., Nowakowska D., Wieckiewicz W., Nowakowska-Toporowska A. Release and Recharge of Fluoride Ions from Acrylic Resin Modified with Bioactive Glass. Polymers. 2021;13:1054. doi: 10.3390/polym13071054. PubMed DOI PMC

Raszewski Z., Chojnacka K., Mikulewicz M. Preparation and characterization of acrylic resins with bioactive glasses. Sci. Rep. 2022;12:16624. doi: 10.1038/s41598-022-20840-1. PubMed DOI PMC

Dentistry—Denture base polymers (EN) International Organization for Standardization; Geneva, Switzerland: 2013.

Gad M.M., Abualsaud R., Alqarawi F.K., Emam A.M., Khan S.Q., Akhtar S., Mahrous A.A., Al-Harbi F.A. Translucency of nanoparticle-reinforced PMMA denture base material: An in-vitro comparative study. Dent Mater J. 2021;40:972–978. doi: 10.4012/dmj.2020-296. PubMed DOI

Rasan D.S., Farhan F.A. Effect of addition of polymerized polymethyl methacrylate (PMMA) and zirconia particles on impact strength, surface hardness, and roughness of heat cure PMMA: An in vitro study. Dent. Hypotheses. 2022;14:36–38. doi: 10.4103/denthyp.denthyp_151_22. DOI

Tamore S.H., Jyothi K.S., Muttagi S., Gaikwad A.M. Flexural strength of surface-treated heat-polymerized acrylic resin after repair with aluminum oxide-reinforced autopolymerizing acrylic resin. Contemp. Clin. Dent. 2018;9:S347–S353. PubMed PMC

Jin J., Mangal U., Seo J.Y., Kim J.Y., Ryu J.H., Lee Y.H., Lugtu C., Hwang G., Cha J.Y., Lee K.J., et al. Cerium oxide nanozymes confer a cytoprotective and bio-friendly surface micro-environment to methacrylate based oro-facial prostheses. Biomaterials. 2023;296:122063. doi: 10.1016/j.biomaterials.2023.122063. PubMed DOI

Abualsaud R., Gad M.M. Highlights on Drug and Ion Release and Recharge Capacity of Antimicrobial Removable Prostheses. Eur. J. Dent. 2022 doi: 10.1055/s-0042-1758788. ahead of print. PubMed DOI PMC

Lee M.J., Kim M.J., Mangal U. Zinc-modified phosphate-based glass micro-filler improves Candida albicans resistance of auto-polymerized acrylic resin without altering mechanical performance. Sci. Rep. 2022;12:19456. doi: 10.1038/s41598-022-24172-y. PubMed DOI PMC

Raj I., Mozetic M., Jayachandran V.P., Jose J., Thomas S., Kalarikkal N. Fracture resistant, antibiofilm adherent, self-assembled PMMA/ZnO nanoformulations for biomedical applications: Physico-chemical and biological perspectives of nano reinforcement. Nanotechnology. 2018;29:305704. doi: 10.1088/1361-6528/aac296. PubMed DOI

Takahashi Y., Okamoto M., Komichi S., Imazato S., Nakatsuka T., Sakamoto S., Kimoto K., Hayashi M. Application of a direct pulp capping cement containing S-PRG filler. Clin. Oral Investig. 2019;23:1723–1731. doi: 10.1007/s00784-018-2596-6. PubMed DOI

Sabir D.B., Omer Z.Q. Evaluation of Fluoride release from orthodontic acrylic resin by using two different polymerizations techniques: An In-Vitro Study. EDJ. 2019;2:149–158. doi: 10.15218/EDJ.2019.04. DOI

Nakornchai N., Arksornnukit M., Kamonkhantikul K., Takahashi H. The pH effect of solvent in silanization on fluoride released and mechanical properties of heat-cured acrylic resin containing fluoride-releasing filler. Dent. Mater. J. 2016;35:440–446. doi: 10.4012/dmj.2015-403. PubMed DOI

Piyananjaratsri R., Chaowicharat E., Saejok K., Susen W., Pankiew A., Srisuwan A., Jeamsaksiri W., Klunngien N., Hruanun C., Poyai A. The effects of fluorine ion implantation on acrylic resin denture base; Proceedings of the 2011 IEEE Nanotechnology Materials and Devices Conference; Jeju, Republic of Korea. 18–21 October 2011; pp. 577–580. DOI

Agarwal B., Singh R.D., Raghav D., Shekhar A., Yadav P. Determination of Fluoride Release and Strength of a Fluoride Treated Heat Cured Acrylic Resin. EAS J. Dent. Oral Med. 2019;1:108–111.

Arksornnukit M., Takahashi H., Nishiyama N. Effects of silane coupling agent amount on mechanical properties and hydrolytic durability of composite resin after hot water storage. Dent. Mater. J. 2004;23:31–36. doi: 10.4012/dmj.23.31. PubMed DOI

Sepulveda P., Jones J.R., Hench L.L. Characterization of melt-derived 45S5 and sol-gel-derived 58s bioactive glasses. J. Biomed. Mater. Res. 2001;58:734–740. doi: 10.1002/jbm.10026. PubMed DOI

Par M., Spanovic N., Bjelovucic R., Marovic D., Schmalz G., Gamulin O., Tarle Z. Long-term water sorption and solubility of experimental bioactive composites based on amorphous calcium phosphate and bioactive glass. Dent. Mater. J. 2019;38:555–564. doi: 10.4012/dmj.2018-145. PubMed DOI

Farina A., Cecchin D., Soares R., Botelho A., Takahashi J., Mazzetto M., Marcelo M. Evaluation of Vickers hardness of different types of acrylic denture base resins with and without glass fiber reinforcement. Gerodontology. 2010;29:e155–e160. doi: 10.1111/j.1741-2358.2010.00435.x. PubMed DOI

Duymus Z., Ozdogan A., Ulu H., Ozbayram O. Evaluation the Vickers Hardness of Denture Base Materials. Open J. Stomatol. 2016;6:114–119. doi: 10.4236/ojst.2016.64014. DOI

Tiskaya M., Al-Eesa N.A., Wong F.S.L., Hill R.G. Characterization of the bioactivity of two commercial composites. Dent. Mat. 2019;35:1757–1768. doi: 10.1016/j.dental.2019.10.004. PubMed DOI

Al-Eesaa N.A., Johal A., Hill R.G., Wong F.S.L. Fluoride-containing bioactive glass composite for orthodontic adhesives: Apatite formation properties. Dent. Mater. 2018;34:1127–1133. doi: 10.1016/j.dental.2018.04.009. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...