Evaluating the Translucency, Surface Roughness, and Cytotoxicity of a PMMA Acrylic Denture Base Reinforced with Bioactive Glasses
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RSPD2023R790
King Saud University
PubMed
38248683
PubMed Central
PMC10817461
DOI
10.3390/jfb15010016
PII: jfb15010016
Knihovny.cz E-resources
- Keywords
- acrylic resin, bioactive glass, cytotoxicity, elemental analysis, ions release, surface roughness,
- Publication type
- Journal Article MeSH
The colonisation of the surface of removable acrylic dentures by various types of microorganisms can lead to the development of various diseases. Therefore, the creation of a bioactive material is highly desirable. This study aimed to develop a denture base material designed to release bioactive ions into the oral environment during use. Four types of bioactive glasses (BAG)-S53P4, Biomin F, 45S5, and Biomin C-were incorporated into the PMMA acrylic resin, with each type constituting 20 wt.% (10 wt.% non-silanised and 10% silanised) of the mixture, while PMMA acrylic resin served as the control group. The specimens were subsequently immersed in distilled water, and pH measurements of the aqueous solutions were taken every seven days for a total of 38 days. Additionally, surface roughness and translucency measurements were recorded both after preparation and following seven days of immersion in distilled water. The cytotoxicity of these materials on human fibroblast cells was evaluated after 24 and 48 h using Direct Contact and MTT assays. Ultimately, the elemental composition of the specimens was determined through energy-dispersive X-ray (EDX) spectroscopy. In general, the pH levels of water solutions containing BAG-containing acrylics gradually increased over the storage period, reaching peak values after 10 days. Notably, S53P4 glass exhibited the most significant increase, with pH levels rising from 5.5 to 7.54. Surface roughness exhibited minimal changes upon immersion in distilled water, while a slight decrease in material translucency was observed, except for Biomin C. However, significant differences in surface roughness and translucency were observed among some of the BAG-embedded specimens under both dry and wet conditions. The composition of elements declared by the glass manufacturer was confirmed by EDX analysis. Importantly, cytotoxicity analysis revealed that specimens containing BAGs, when released into the environment, did not adversely affect the growth of human gingival fibroblast cells after 48 h of exposure. This suggests that PMMA acrylics fabricated with BAGs have the potential to release ions into the environment and can be considered biocompatible materials. Further clinical trials are warranted to explore the practical applications of these materials as denture base materials.
See more in PubMed
Sabri B., Satgunam M., Abreeza N.M., Abed A. A review on enhancements of PMMA Denture Base Material with Different Nano-Fillers. Cogent Eng. 2021;8:1875968. doi: 10.1080/23311916.2021.1875968. DOI
Lourinho C., Salgado H., Correia A., Fonseca P. Mechanical Properties of Polymethyl Methacrylate as Denture Base Material: Heat-Polymerized vs. 3D-Printed-Systematic Review and Meta-Analysis of In Vitro Studies. Biomedicines. 2022;10:2565. doi: 10.3390/biomedicines10102565. PubMed DOI PMC
Giti R., Zomorodian K., Firouzmandi M., Zareshahrabadi Z., Rahmannasab S. Antimicrobial Activity of Thermocycled Polymethyl Methacrylate Resin Reinforced with Titanium Dioxide and Copper Oxide Nanoparticles. Int. J. Dent. 2021;2021:6690806. doi: 10.1155/2021/6690806. PubMed DOI PMC
Tsutsumi C., Takakuda K., Wakabayashi N. Reduction of Candida Biofilm Adhesion by Incorporation of Prereacted Glass Ionomer Filler in Denture Base Resin. J. Dent. 2016;44:37–43. doi: 10.1016/j.jdent.2015.11.010. PubMed DOI
Gligorijević N., Mihajlov-Krstev T., Kostić M., Nikolić L., Stanković N., Nikolić V., Dinić A., Igić M., Bernstein N. Antimicrobial Properties of Silver-Modified Denture Base Resins. Nanomaterials. 2022;12:2453. doi: 10.3390/nano12142453. PubMed DOI PMC
Sun J., Wang L., Wang J., Li Y., Zhou X., Guo X., Zhang T., Guo H. Characterization and evaluation of a novel silver nanoparticles-loaded polymethyl methacrylate denture base: In vitro and in vivo animal study. Dent. Mater. J. 2021;40:1100–1108. doi: 10.4012/dmj.2020-129. PubMed DOI
Alhotan A., Yates J., Zidan S., Haider J., Silikas N. Assessing fracture toughness and impact strength of PMMA reinforced with nano-particles and fibre as advanced denture base materials. Materials. 2021;14:4127. doi: 10.3390/ma14154127. PubMed DOI PMC
Totu E.E., Nechifor A.C., Nechifor G., Aboul-Enein H.Y., Cristache C.M. Poly (methyl methacrylate) with TiO2 nanoparticles inclusion for stereolithographic complete denture manufacturing—The future in dental care for elderly edentulous patients? J. Dent. 2017;59:68–77. doi: 10.1016/j.jdent.2017.02.012. PubMed DOI
Bacali C., Baldea I., Moldovan M., Carpa R., Olteanu D.E., Filip G.A., Nastase V., Lascu L., Badea M., Constantiniuc M., et al. Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clin. Oral Investig. 2020;24:2713–2725. doi: 10.1007/s00784-019-03133-2. PubMed DOI
Kamonkhantikul K., Arksornnukit M., Takahashi H. Antifungal, Optical, and Mechanical Properties of Polymethylmethacrylate Material Incorporated with Silanized Zinc Oxide Nanoparticles. Int. J. Nanomed. 2017;12:2353–2360. doi: 10.2147/IJN.S132116. PubMed DOI PMC
Gad M.M., Alshehri S.Z., Alhamid S.A., Albarrak A., Khan S.Q., Alshahrani F.A., Alqarawi F.K. Water Sorption, Solubility, and Translucency of 3D-Printed Denture Base Resins. Dent. J. 2022;10:42. doi: 10.3390/dj10030042. PubMed DOI PMC
Hamid S.K., Alghamdi L.A., Alshahrani F.A., Khan S.Q., Matin A., Gad M.M. In Vitro Assessment of Artificial Aging on the Antifungal Activity of PMMA Denture Base Material Modified with ZrO2 Nanoparticles. Int. J. Dent. 2021;2021:5560443. doi: 10.1155/2021/5560443. PubMed DOI PMC
Alzayyat S.T., Almutiri G.A., Aljandan J.K., Algarzai R.M., Khan S.Q., Akhtar S., Matin A., Gad M.M. Antifungal Efficacy and Physical Properties of Poly(Methylmethacrylate) Denture Base Material Reinforced with SiO2 Nanoparticles. J. Prosthodont. 2021;30:500–508. doi: 10.1111/jopr.13271. PubMed DOI
Bajunaid S.O., Baras B.H., Weir M.D., Xu H.H. Denture Acrylic Resin Material with Antibacterial and Protein-Repelling Properties for the Prevention of Denture Stomatitis. Polymers. 2022;14:230. doi: 10.3390/polym14020230. PubMed DOI PMC
An J., Ding N., Zhang Z. Mechanical and antibacterial properties of polymethyl methacrylate modified with zinc dimethacrylate. J. Prosthet. Dent. 2022;128:100.e1–100.e8. doi: 10.1016/j.prosdent.2022.04.029. PubMed DOI
Da Silva Barboza A., Fang L.K., Ribeiro J.S., Cuevas-Suárez C.E., Moraes R.R., Lund R.G. Physicomechanical, Optical, and Antifungal Properties of Polymethyl Methacrylate Modified with Metal Methacrylate Monomers. J. Prosthet. 2021;125:706.e1–706.e6. doi: 10.1016/j.prosdent.2020.12.039. PubMed DOI
An S., Evans J.L., Hamlet S., Love R.M. Incorporation of antimicrobial agents in denture base resin: A systematic review. J. Prosthet. Dent. 2021;126:188–195. doi: 10.1016/j.prosdent.2020.03.033. PubMed DOI
Raszewski Z., Chojnacka K., Mikulewicz M., Alhotan A. Bioactive Glass-Enhanced Resins: A New Denture Base Material. Materials. 2023;16:4363. doi: 10.3390/ma16124363. PubMed DOI PMC
Asgari N., Baaske M., Orrit M. Burst-by-Burst Measurement of Rotational Diffusion at Nanosecond Resolution Reveals Hot-Brownian Motion and Single-Chain Binding. ACS Nano. 2023;17:12684–12692. doi: 10.1021/acsnano.3c03392. PubMed DOI PMC
Gusmão G.M., De Queiroz T.V., Pompeu G.F., Menezes Filho P.F., da Silva C.H. The influence of storage time and pH variation on water sorption by different composite resins. Indian J. Dent. Res. 2013;24:60–65. doi: 10.4103/0970-9290.114954. PubMed DOI
Moslehifard E., Ghaffari T., Abolghasemi H., Maleki Dizaj S. Comparison of Conventional Pressure-packed and Injection Molding Processing Methods for an Acrylic Resin Denture based on Microhardness, Surface Roughness, and Water Sorption. Int. J. Dent. 2022;2022:7069507. doi: 10.1155/2022/7069507. PubMed DOI PMC
Alshamrani A., Alhotan A., Owais A., Ellakwa A. The Clinical Potential of 3D-Printed Crowns Reinforced with Zirconia and Glass Silica Microfillers. J. Funct. Biomater. 2023;14:267. doi: 10.3390/jfb14050267. PubMed DOI PMC
Nowakowska D., Saczko J., Kulbacka J., Choromanska A., Raszewski Z. Cytotoxic potential of vasoconstrictor experimental gingival retraction agents: In vitro study on primary human gingival fibroblasts. Folia Biol. 2012;58:37–43. PubMed
Saczko J., Dominiak M., Kulbacka J., Chwiłkowska A., Krawczykowska H. A simple and established method of tissue culture of human gingival fibroblasts for gingival augmentation. Folia Histochem. Cytobiol. 2008;46:117–119. doi: 10.2478/v10042-008-0017-4. PubMed DOI
Elmergawy F.H., Nassif M.S., El-Borady O.M., Mabrouk M., El-Korashy D.I. Physical and mechanical evaluation of dental resin composite after modification with two different types of Montmorillonite nanoclay. J. Dent. 2021;112:103731. doi: 10.1016/j.jdent.2021.103731. PubMed DOI
Gad M.M., Abu-Rashid K., Alkhaldi A., Alshehri O., Khan S.Q. Evaluation of the effectiveness of bioactive glass fillers against Candida albicans adhesion to PMMA denture base materials: An in vitro study. Saudi Dent. J. 2022;34:730–737. doi: 10.1016/j.sdentj.2022.10.002. PubMed DOI PMC
Berger J.C., Driscoll C.F., Romberg E., Luo Q., Thompson G. Surface roughness of denture base acrylic resins after processing and after polishing. J. Prosthodont. 2006;15:180–186. doi: 10.1111/j.1532-849X.2006.00098.x. PubMed DOI
Costa R.T.F., Pellizzer E.P., Vasconcelos B., Gomes J.M.L., Lemos C.A.A., de Moraes S.L.D. Surface roughness of acrylic resins used for denture base after chemical disinfection: A systematic review and meta-analysis. Gerodontology. 2021;38:242–251. doi: 10.1111/ger.12529. PubMed DOI
Al-Rifaiy M.Q. The effect of mechanical and chemical polishing techniques on the surface roughness of denture base acrylic resins. Saudi Dent. J. 2010;22:13–17. doi: 10.1016/j.sdentj.2009.12.006. PubMed DOI PMC
Xu X., Burgess J.O. Compressive strength, fluoride release and recharge of fluoride-releasing materials. Biomaterials. 2003;24:2451–2461. doi: 10.1016/S0142-9612(02)00638-5. PubMed DOI
Sagadevan K.S.S., Ravichandran R., Harsha Kumar K., Nair V.V., Kavitha J., Deepthi V. Effect of zirconium oxide and cellulose nanoparticles addition on the flexural strength, impact strength and translucency of heat polymerized acrylic resin: An in vitro study. Int. J. Dent. Mater. 2021;3:112–119.
Hamid S.K., Al Dubayan A.H., Alghamdi L.A. Mechanical, Surface, and Optical Properties of PMMA Denture Base Material Modified with Azadirachta indica as an Antifungal Agent. J. Contemp. Dent. Pract. 2021;22:655–664. doi: 10.5005/jp-journals-10024-3103. PubMed DOI
Gad M.M., Abualsaud R., Alqarawi F.K., Emam A.N.M. Translucency of nanoparticle-reinforced PMMA denture base material: An invitro comparative study. Dent. Mater. J. 2021;40:972–978. doi: 10.4012/dmj.2020-296. PubMed DOI
Rismanchian M., Khodaeian N., Bahramian L., Fathi M., Sadeghi-Aliabadi H. In-vitro Comparison of Cytotoxicity of Two Bioactive Glasses in Micropowder and Nanopowder forms. Iran. J. Pharm. Res. 2013;12:437–443. PubMed PMC
Chen R., Han Z., Huang Z., Karki J., Wang C., Zhu B., Zhang X. Antibacterial activity, cytotoxicity and mechanical behavior of nano-enhanced denture base resin with different kinds of inorganic antibacterial agents. Dent. Mater. J. 2017;36:693–699. doi: 10.4012/dmj.2016-301. PubMed DOI
Safwat E.M., Alkabani Y.M., Zaki D.Y. Preparation and Characterization of Dental Pit and Fissure Sealant Based on Calcium Sodium Silicate Bioactive Glasses. Silicon. 2023;15:6785–6800. doi: 10.1007/s12633-023-02517-0. DOI
Chen J., Zeng L., Chen X., Liao T., Zheng J. Preparation and characterization of bioactive glass tablets and evaluation of bioactivity and cytotoxicity in vitro. Bioact. Mater. 2017;3:315–321. doi: 10.1016/j.bioactmat.2017.11.004. PubMed DOI PMC
Salehi S., Gwinner F., Mitchell J.C., Pfeifer C., Ferracane J.L. Cytotoxicity of resin composites containing bioactive glass fillers. Dent. Mater. J. 2015;31:195–203. doi: 10.1016/j.dental.2014.12.004. PubMed DOI PMC