Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28253860
PubMed Central
PMC5335500
DOI
10.1186/s12863-017-0484-8
PII: 10.1186/s12863-017-0484-8
Knihovny.cz E-zdroje
- Klíčová slova
- Ancient fish genome, HoxA/D paralogs mapping, Rediploidization, Sturgeon whole genome duplication,
- MeSH
- diploidie * MeSH
- duplikace genu * MeSH
- genomika * MeSH
- genotypizační techniky MeSH
- hybridizace in situ fluorescenční * MeSH
- mikrosatelitní repetice genetika MeSH
- ribozomy genetika MeSH
- rybí proteiny genetika MeSH
- ryby genetika MeSH
- sekvenční homologie nukleových kyselin * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rybí proteiny MeSH
BACKGROUND: Acipenseriformes is a basal lineage of ray-finned fishes and comprise 27 extant species of sturgeons and paddlefishes. They are characterized by several specific genomic features as broad ploidy variation, high chromosome numbers, presence of numerous microchromosomes and propensity to interspecific hybridization. The presumed palaeotetraploidy of the American paddlefish was recently validated by molecular phylogeny and Hox genes analyses. A whole genome duplication in the paddlefish lineage was estimated at approximately 42 Mya and was found to be independent from several genome duplications evidenced in its sister lineage, i.e. sturgeons. We tested the ploidy status of available chromosomal markers after the expected rediploidization. Further we tested, whether paralogs of Hox gene clusters originated from this paddlefish specific genome duplication are cytogenetically distinguishable. RESULTS: We found that both paralogs HoxA alpha and beta were distinguishable without any overlapping of the hybridization signal - each on one pair of large metacentric chromosomes. Of the HoxD, only the beta paralog was unequivocally identified, whereas the alpha paralog did not work and yielded only an inconclusive diffuse signal. Chromosomal markers on three diverse ploidy levels reflecting different stages of rediploidization were identified: quadruplets retaining their ancestral tetraploid condition, semi-quadruplets still reflecting the ancestral tetraploidy with clear signs of advanced rediploidization, doublets were diploidized with ancestral tetraploidy already blurred. Also some of the available microsatellite data exhibited diploid allelic band patterns at their loci whereas another locus showed more than two alleles. CONCLUSIONS: Our exhaustive staining of paddlefish chromosomes combined with cytogenetic mapping of ribosomal genes and Hox paralogs and with microsatellite data, brings a closer look at results of the process of rediploidization in the course of paddlefish genome evolution. We show a partial rediploidization represented by a complex mosaic structure comparable with segmental paleotetraploidy revealed in sturgeons (Acipenseridae). Sturgeons and paddlefishes with their high propensity for whole genome duplication thus offer suitable animal model systems to further explore evolutionary processes that were shaping the early evolution of all vertebrates.
Benaroya Research Institute and University of Washington Seattle WA 98101 USA
Research Institute for Limnology University of Innsbruck Mondseestr 9 Mondsee Austria
Zobrazit více v PubMed
Nelson JS. Fishes of the world. 4. Hoboken: John Wiley & Sons; 2006.
Peng Z, Ludwig A, Wang D, Diogo R, Wei Q, He S. Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes) Mol Phylogenet Evol. 2007;42:854–862. doi: 10.1016/j.ympev.2006.09.008. PubMed DOI
Krieger J, Hett AK, Fuerst PA, Artyukhin E, Ludwig A. The molecular phylogeny of the order Acipenseriformes revised. J Appl Ichthyol. 2008;24:36–45. doi: 10.1111/j.1439-0426.2008.01088.x. DOI
Dingerkus G, Howell WM. Karyotypic analysis and evidence of tetraploidy in the North American paddlefish, Polyodon spathula. Science. 1976;194:842–844. doi: 10.1126/science.982045. PubMed DOI
Zhang S-M, Yang Y, Deng H, Wei QW, Wu QJ. Genome size and ploidy characters of several species of sturgeons and paddlefishes with comments on cellular evolution of Acipenseriformes. Acta Zool Sinica. 1999;45:200–206.
Birstein VJ, Poletaev AI, Goncharov BF. DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry. 1993;14:377–383. doi: 10.1002/cyto.990140406. PubMed DOI
Birstein VJ, Hanner R, Desalle R. Phylogeny of the Acipenseriformes: Cytogenetic and molecular approaches. Environ Biol Fishes. 1997;48:127–156. doi: 10.1023/A:1007366100353. DOI
Billard R, Lecointre G. Biology and conservation of sturgeon and paddlefish. Rev Fish Biol Fisher. 2001;10:355–392. doi: 10.1023/A:1012231526151. DOI
Romanenko SA, Biltueva LS, Serdyukova NA, Kulemzina AI, Beklemisheva VR, Gladkikh OL, et al. Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting. Mol Cytogen. 2015;8:90. doi: 10.1186/s13039-015-0194-8. PubMed DOI PMC
Havelka M, Kašpar V, Hulák M, Flajšhans M. Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zool. 2011;60:93–103.
Trifonov VA, Romanenko SS, Beklemisheva VR, Biltueva LS, Makunin AI, Lemskaya NA, et al. Evolutionary plasticity of acipenseriform genomes. Chromosoma. 2016; doi: 10.1007/s00412-016-0609-2 PubMed
Crow KC, Smith CD, Cheng JF, Wagner GP, Amemiya CA. An independent genome duplication inferred from Hox paralogs in the American paddlefish – a representative basal ray-finned fish and important comparative reference. Genome Biol Evol. 2012;4:937–953. doi: 10.1093/gbe/evs067. PubMed DOI PMC
Symonová R, Flajšhans M, Sember A, Havelka M, Gela D, Kořínková T, et al. Molecular cytogenetics in artificial hybrid and highly polyploid sturgeons: an evolutionary story narrated by repetitive sequences. Cytogenet Genome Res. 2013;141:153–162. doi: 10.1159/000354882. PubMed DOI
Havelka M, Hulák M, Ráb P, Rábová M, Lieckfeldt D, Ludwig A, et al. Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet. 2014;15:5. doi: 10.1186/1471-2156-15-5. PubMed DOI PMC
Havelka M, Bytyuskyy D, Symonová R, Ráb P, Flajshans M. The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet Sel Evol. 2016;48:12. doi: 10.1186/s12711-016-0194-0. PubMed DOI PMC
Wolfe KH. Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet. 2001;2:333–341. doi: 10.1038/35072009. PubMed DOI
Fontana F, Congiu L, Mudrak VA, Quattro JM, Smith TIJ, Ware K, et al. Evidence of hexaploid karyotype in Shortnose sturgeon. Genome. 2008;51:113–119. doi: 10.1139/G07-112. PubMed DOI
Havelka M, Hulák M, Bailie DA, Prodöhl PA, Flajšhans M. Extensive genome duplications in sturgeons: new evidence from microsatellite data. J Appl Ichthyol. 2013;29:704–708. doi: 10.1111/jai.12224. DOI
Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus) Genetics. 2001;158:1203–1215. PubMed PMC
Macqueen DJ, Johnston IA. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc R Soc B. 2014;281:20132881. doi: 10.1098/rspb.2013.2881. PubMed DOI PMC
Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci U S A. 2004;101:1638–1643. doi: 10.1073/pnas.0307968100. PubMed DOI PMC
McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992;68:283–302. doi: 10.1016/0092-8674(92)90471-N. PubMed DOI
Garcia-Fernandez J, Holland PWH. Archetypal Organization of the Amphioxus Hox Gene-Cluster. Nature. 1994;370:563–566. doi: 10.1038/370563a0. PubMed DOI
Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, et al. The Amphioxus genome and the evolution of the chordate karyotype. Nature. 2008;453:1064–1071. doi: 10.1038/nature06967. PubMed DOI
Martinez P, Amemiya CT. Genomics of the HOX gene cluster. Comp Biochem Physiol B: Biochem Mol Biol. 2002;133:571–580. doi: 10.1016/S1096-4959(02)00121-5. PubMed DOI
Van de Peer Y, Maere S, Meyer A. 2R or not 2R is not the question anymore. Nat Rev Genet. 2010;11:166. doi: 10.1038/nrg2600-c2. PubMed DOI
May B, Krueger CC, Kincaid HL. Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can J Fish Aquat Sci. 1997;54:1542–1547. doi: 10.1139/f97-061. DOI
Heist EJ, Nicholson EH, Sipiroski JT, Keeney DB. Microsatellite markers for the American paddlefish (Polyodon spathula) Conserv Genet. 2002;3:205–207. doi: 10.1023/A:1015272414957. DOI
Venkatesh B. Evolution and diversity of fish genomes. Curr Opin Genet Dev. 2003;13:588–592. doi: 10.1016/j.gde.2003.09.001. PubMed DOI
Arai R. Fish Karyotypes. A Check List. Springer. 2011.
Glasauer SM, Neuhauss SC. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics. 2014;289:1045–1060. doi: 10.1007/s00438-014-0889-2. PubMed DOI
Phillips R, Ráb P. Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev. 2001;76:1–25. doi: 10.1017/S1464793100005613. PubMed DOI
Mable BK, Alexandrou MA, Taylor MI. Genome duplication in amphibians and fish: an extended synthesis. J Zool. 2011;284:151–182. doi: 10.1111/j.1469-7998.2011.00829.x. DOI
Fontana F, Zane L, Pepe A, Congiu L. Polyploidy in Acipenseriformes: cytogenetic and molecular approaches. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG, editors. Fish Cytogenetics. Enfield: Science Publisher, Inc.; 2007. pp. 385–403.
Vasiľev VP. Mechanisms of polyploid evolution in fish: Polyploidy in Sturgeons. In: Carmona R, Domezain A, García-Gallego M, Hernando JA, Rodríguez F, Ruiz-Rejón M, editors. Biology, Conservation and Sustainable Development of Sturgeons. The Netherlands: Springer Science; 2009. pp. 97–117.
Birstein VJ, Vasil’ev VP. Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pisces): karyotypes, nucleoli, and nucleolus-organizer regions in four acipenserid species. Genetica. 1987;72:3–12. doi: 10.1007/BF00126973. DOI
Krieger J, Fuerst PA. Evidence for a slowed rate of molecular evolution in the order Acipenseriformes. Mol Biol Evol. 2002;19:891–897. doi: 10.1093/oxfordjournals.molbev.a004146. PubMed DOI
Ráb P. Karyotype evolution in fishes of the order Esociformes. Habilitation Thesis. Prague: Charles University in Prague (in Czech); 2004.
Stimpson KM, Sullivan LL, Kuo ME, Sullivan BA. Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function. PLoS ONE. 2014;9(3) doi: 10.1371/journal.pone.0092432. PubMed DOI PMC
Symonová R, Majtánová Z, Korínková T, Jankun M, Dion-Cȏté A-M, Bernatchez L, Ráb P. Chromosomal characteristics of rDNA genes in salmonid fishes: trends in their patterns and evolution. 20th International Colloquium on Animal Cytogenetics and Gene Mapping, Cordoba, Spain. Chrom Res. 2012;20(6):810.
Symonová R, Majtánová Z, Sember A, Staaks GBO, Bohlen J, Freyhof J, et al. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol. 2013;13:42. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC
Sember A, Bohlen J, Šlechtová V, Symonová R, Ráb P. Karyotype differentiation in nemacheilid loach fishes (Nemacheilidae, Cobitoidea, Cypriniformes): hidden variability uncovered by molecular cytogenetic markers in 19 species and its phylogenetic interpretation. BMC Evol Biol. 2015;15:251. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
David L, Blum S, Feldman MW, Lavi U, Hillel J. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol. 2003;20:1425–1434. doi: 10.1093/molbev/msg173. PubMed DOI
Knytl M, Kalous L, Symonová R, Rylková K, Ráb P. Chromosome studies of European cyprinid fishes: cross-species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenet Genome Res. 2013;139:276–283. doi: 10.1159/000350689. PubMed DOI
Minguillón C, Gardenyes J, Serra E, Castro LF, Hill-Force A, Holland PW, et al. No more than 14: the end of the amphioxus Hox cluster. Int J Biol Sci. 2005;1:19–23. doi: 10.7150/ijbs.1.19. PubMed DOI PMC
Birstein VJ. Phylogeny and evolution of Acipenseriformes: new molecular and genetic data create new puzzles. In: Gall YM, Kolchinsky EI, editors. Evolutionary biology: history and theory. St. Peterburg: Nauka; 2005. pp. 231–269.
Allendorf FW, Thorgaard GH. Tetraploidy and the evolution of salmonid fishes. In: Turner BJ, editor. Evolutionary Genetics of Fishes. New York: Plenum Press; 1984. pp. 1–46.
Fujiwara A, Hishida-Umehara C, Sakamoto T, Okamoto N, Nakyama I, Abe S. Improved fish lymphocyte culture for chromosome preparation. Genetica. 2001;111:77–89. doi: 10.1023/A:1013788626712. PubMed DOI
Sola L, Rossi AR, Iaselli V, Rasch EM, Monaco PJ. Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3 and silver staining. Cytogenet Cell Genet. 1992;60:229–235. doi: 10.1159/000133346. PubMed DOI
Howell WM, Black DA. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia. 1980;36:1014–1015. doi: 10.1007/BF01953855. PubMed DOI
Haaf T, Schmid M. An early stage of ZW/ZZ sex chromosome differentiation in Poecilia sphenops var. melanistica (Poeciliidae, Cyprinodontiformes) Chromosoma. 1984;89:37–41. doi: 10.1007/BF00302348. DOI
Dayrat B, Tillier A, Lecointre G, Tillier S. New clades of euthyneuran gastropods (Mollusca) from 28S rRNA sequences. Mol Phylogenet Evol. 2001;19:225–235. doi: 10.1006/mpev.2001.0926. PubMed DOI
Komiya H, Takemura S. Nucleotide sequence of 5S ribosomal RNA from rainbow trout (Salmo gairdnerii) liver. J Biochem. 1979;86:1067–1080. doi: 10.1093/oxfordjournals.jbchem.a132601. PubMed DOI
Symonová R, Sember A, Majtánová Z, Ráb P. Characteriazation of Fish Genomes by GISH and CGH. In: Ozouf-Costaz C, Pisano E, Foresti F, De Almeida F, Toledo L, editors. Fish Cytogenetic Techniques. Ray-Fin Fishes and Chrondrichthyans. CRC Press. 2015. pp. 118–131.
Smit AFA, Hubley R, Green P. Repeat Masker Open-3.0. 2010. www.repeatmasker.org
Schuelke M. An economic method for the fluorescent labeling of PCR fragments: a poor man’s approach to genotyping for research and high-throughput diagnostics. Nat Biotechnol. 2000;18:233–234. doi: 10.1038/72708. PubMed DOI
Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between?
Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution
Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics