Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33671814
PubMed Central
PMC7926999
DOI
10.3390/genes12020312
PII: genes12020312
Knihovny.cz E-zdroje
- Klíčová slova
- GC content, GC-biased gene conversion, chromosome size, linkage group, microchromosomes,
- MeSH
- chromozomy genetika MeSH
- cytogenetika * MeSH
- genom genetika MeSH
- molekulární evoluce * MeSH
- obratlovci klasifikace genetika MeSH
- ptáci klasifikace genetika MeSH
- rekombinace genetická genetika MeSH
- repetitivní sekvence nukleových kyselin MeSH
- ryby klasifikace genetika MeSH
- zastoupení bazí genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Our novel Python-based tool EVANGELIST allows the visualization of GC and repeats percentages along chromosomes in sequenced genomes and has enabled us to perform quantitative large-scale analyses on the chromosome level in fish and other vertebrates. This is a different approach from the prevailing analyses, i.e., analyses of GC% in the coding sequences that make up not more than 2% in human. We identified GC content (GC%) elevations in microchromosomes in ancient fish lineages similar to avian microchromosomes and a large variability in the relationship between the chromosome size and their GC% across fish lineages. This raises the question as to what extent does the chromosome size drive GC% as posited by the currently accepted explanation based on the recombination rate. We ascribe the differences found across fishes to varying GC% of repetitive sequences. Generally, our results suggest that the GC% of repeats and proportion of repeats are independent of the chromosome size. This leaves an open space for another mechanism driving the GC evolution in vertebrates.
Department of Biological and Environmental Sciences Samford University Birmingham AL 35226 USA
Faculty of Science University of Hradec Kralove 500 03 Hradec Kralove Czech Republic
Zobrazit více v PubMed
Gregory T.R. Animal Genome Size Database. [(accessed on 31 January 2021)]; Available online: http://www.genomesize.com.
Levan A., Fredga K., Sandberg A.A. Nomenclature for Centromeric Position on Chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Mark H.F., Mark R., Pan T., Mark Y. Centromere Index Derivation by a Novel and Convenient Approach. Ann. Clin. Lab. Sci. 1993;23:267–274. PubMed
Comings D.E. Mechanisms of Chromosome Banding and Implications for Chromosome Structure. Annu. Rev. Genet. 1978;12:25–46. doi: 10.1146/annurev.ge.12.120178.000325. PubMed DOI
Luo C. Multiple Chromosomal Banding in Grass Carp, Ctenopharyngodon Idellus. Heredity. 1998;81:481–485. doi: 10.1046/j.1365-2540.1998.00323.x. DOI
Medrano L., Bernardi G., Couturier J., Dutrillaux B., Bernardi G. Chromosome Banding and Genome Compartmentalization in Fishes. Chromosoma. 1988;96:178–183. doi: 10.1007/BF00331050. DOI
Mayr B., Kalat M., Ráb P., Lambrou M. Band Karyotypes and Specific Types of Heterochromatins in Several Species of European Percid Fishes (Percidea, Pisces) Genetica. 1987;75:199–205. doi: 10.1007/BF00123574. DOI
Mank J.E., Avise J.C. Phylogenetic Conservation of Chromosome Numbers in Actinopterygiian Fishes. Genetica. 2006;127:321–327. doi: 10.1007/s10709-005-5248-0. PubMed DOI
Gregory T.R., Witt J.D.S. Population Size and Genome Size in Fishes: A Closer Look. Genome. 2008;51:309–313. doi: 10.1139/G08-003. PubMed DOI
Hardie D.C., Hebert P.D.N. The Nucleotypic Effects of Cellular DNA Content in Cartilaginous and Ray-Finned Fishes. Genome. 2003;46:683–706. doi: 10.1139/g03-040. PubMed DOI
Hardie D.C., Hebert P.D. Genome-Size Evolution in Fishes. Can. J. Fish. Aquat. Sci. 2004;61:1636–1646. doi: 10.1139/f04-106. DOI
Melodelima C., Gautier C. The GC-Heterogeneity of Teleost Fishes. BMC Genom. 2008;9:632. doi: 10.1186/1471-2164-9-632. PubMed DOI PMC
Costantini M., Auletta F., Bernardi G. Isochore Patterns and Gene Distributions in Fish Genomes. Genomics. 2007;90:364–371. doi: 10.1016/j.ygeno.2007.05.006. PubMed DOI
Costantini M., Cammarano R., Bernardi G. The Evolution of Isochore Patterns in Vertebrate Genomes. BMC Genom. 2009;10:146. doi: 10.1186/1471-2164-10-146. PubMed DOI PMC
Eyre-Walker A. Recombination and Mammalian Genome Evolution. Proc. R. Soc. Lond. B Biol. Sci. 1993;252:237–243. doi: 10.1098/rspb.1993.0071. PubMed DOI
Fullerton S.M., Bernardo Carvalho A., Clark A.G. Local Rates of Recombination Are Positively Correlated with GC Content in the Human Genome. Mol. Biol. Evol. 2001;18:1139–1142. doi: 10.1093/oxfordjournals.molbev.a003886. PubMed DOI
Montoya-Burgos J.I., Boursot P., Galtier N. Recombination Explains Isochores in Mammalian Genomes. Trends Genet. 2003;19:128–130. doi: 10.1016/S0168-9525(03)00021-0. PubMed DOI
Mugal C.F., Weber C.C., Ellegren H. GC-Biased Gene Conversion Links the Recombination Landscape and Demography to Genomic Base Composition: GC-Biased Gene Conversion Drives Genomic Base Composition across a Wide Range of Species. BioEssays. 2015;37:1317–1326. doi: 10.1002/bies.201500058. PubMed DOI
Stapley J., Feulner P.G.D., Johnston S.E., Santure A.W., Smadja C.M. Variation in Recombination Frequency and Distribution across Eukaryotes: Patterns and Processes. Philos. Trans. R. Soc. B Biol. Sci. 2017;372:20160455. doi: 10.1098/rstb.2016.0455. PubMed DOI PMC
Romiguier J., Ranwez V., Douzery E.J.P., Galtier N. Contrasting GC-Content Dynamics across 33 Mammalian Genomes: Relationship with Life-History Traits and Chromosome Sizes. Genome Res. 2010;20:1001–1009. doi: 10.1101/gr.104372.109. PubMed DOI PMC
Huttener R., Thorrez L., In’t Veld T., Granvik M., Snoeck L., Van Lommel L., Schuit F. GC Content of Vertebrate Exome Landscapes Reveal Areas of Accelerated Protein Evolution. BMC Evol. Biol. 2019;19 doi: 10.1186/s12862-019-1469-1. PubMed DOI PMC
Shen W., Wang D., Ye B., Shi M., Ma L., Zhang Y., Zhao Z. GC3-Biased Gene Domains in Mammalian Genomes. Bioinformatics. 2015;31:3081–3084. doi: 10.1093/bioinformatics/btv329. PubMed DOI PMC
Weber C.C., Boussau B., Romiguier J., Jarvis E.D., Ellegren H. Evidence for GC-Biased Gene Conversion as a Driver of between-Lineage Differences in Avian Base Composition. Genome Biol. 2014;15 doi: 10.1186/s13059-014-0549-1. PubMed DOI PMC
Bolívar P., Mugal C.F., Nater A., Ellegren H. Recombination Rate Variation Modulates Gene Sequence Evolution Mainly via GC-Biased Gene Conversion, Not Hill–Robertson Interference, in an Avian System. Mol. Biol. Evol. 2016;33:216–227. doi: 10.1093/molbev/msv214. PubMed DOI PMC
Matsubara K., Kuraku S., Tarui H., Nishimura O., Nishida C., Agata K., Kumazawa Y., Matsuda Y. Intra-Genomic GC Heterogeneity in Sauropsids: Evolutionary Insights from CDNA Mapping and GC3 Profiling in Snake. BMC Genom. 2012;13:604. doi: 10.1186/1471-2164-13-604. PubMed DOI PMC
Figuet E., Ballenghien M., Romiguier J., Galtier N. Biased Gene Conversion and GC-Content Evolution in the Coding Sequences of Reptiles and Vertebrates. Genome Biol. Evol. 2015;7:240–250. doi: 10.1093/gbe/evu277. PubMed DOI PMC
Wang D. GCevobase: An Evolution-Based Database for GC Content in Eukaryotic Genomes. Bioinformatics. 2018;34:2129–2131. doi: 10.1093/bioinformatics/bty068. PubMed DOI
Frenkel S., Kirzhner V., Korol A. Organizational Heterogeneity of Vertebrate Genomes. PLoS ONE. 2012;7:e32076. doi: 10.1371/journal.pone.0032076. PubMed DOI PMC
Li X.-Q., Du D. Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla. PLoS ONE. 2014;9:e88339. doi: 10.1371/journal.pone.0088339. PubMed DOI PMC
Symonová R., Suh A. Nucleotide Composition of Transposable Elements Likely Contributes to AT/GC Compositional Homogeneity of Teleost Fish Genomes. Mob. DNA. 2019;10 doi: 10.1186/s13100-019-0195-y. PubMed DOI PMC
Carducci F., Barucca M., Canapa A., Carotti E., Biscotti M.A. Mobile Elements in Ray-Finned Fish Genomes. Life. 2020;10:221. doi: 10.3390/life10100221. PubMed DOI PMC
Bernardi G. The Vertebrate Genome: Isochores and Evolution. Mol. Biol. Evol. 1993 doi: 10.1093/oxfordjournals.molbev.a039994. PubMed DOI
Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Pokorná M.J., Doležálková M., Flajšhans M., Normandeau E., et al. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish: Cytogenomics of Gars. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:607–619. doi: 10.1002/jez.b.22719. PubMed DOI
Matoulek D., Borůvková V., Ocalewicz K., Symonová R. GC and Repeats Profiling along Chromosomes—The Future of Fish Compositional Cytogenomics. Genes. 2021;12:50. doi: 10.3390/genes12010050. PubMed DOI PMC
Bernardi G. Structural and Evolutionary Genomics Natural Selection in Genome Evolution. Elsevier; Amsterdam, The Netherlands: 2005.
Peona V., Weissensteiner M.H., Suh A. How Complete Are “Complete” Genome Assemblies?—An Avian Perspective. Mol. Ecol. Resour. 2018;18:1188–1195. doi: 10.1111/1755-0998.12933. PubMed DOI
Jebb D., Huang Z., Pippel M., Hughes G.M., Lavrichenko K., Devanna P., Winkler S., Jermiin L.S., Skirmuntt E.C., Katzourakis A., et al. Six Reference-Quality Genomes Reveal Evolution of Bat Adaptations. Nature. 2020;583:578–584. doi: 10.1038/s41586-020-2486-3. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Core Team; Vienna, Austria: 2013. Version 2.6.2.
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Springer International Publishing; Cham, Switzerland: 2016. Use R!
Nelson J.S., Grande T., Wilson M.V.H. Fishes of the World. 5th ed. John Wiley & Sons; Hoboken, NJ, USA: 2016.
Howe K., Clark M.D., Torroja C.F., Torrance J., Berthelot C., Muffato M., Collins J.E., Humphray S., McLaren K., Matthews L., et al. The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature. 2013;496:498–503. doi: 10.1038/nature12111. PubMed DOI PMC
Hidalgo O., Pellicer J., Christenhusz M., Schneider H., Leitch A.R., Leitch I.J. Is There an Upper Limit to Genome Size? Trends Plant Sci. 2017;22:567–573. doi: 10.1016/j.tplants.2017.04.005. PubMed DOI
NCBI Genome Browser. [(accessed on 31 January 2021)]; Available online: https://www.ncbi.nlm.nih.gov/genome/browse.
Meyer A., Schartl M. Gene and Genome Duplications in Vertebrates: The One-to-Four (-to-Eight in Fish) Rule and the Evolution of Novel Gene Functions. Curr. Opin. Cell Biol. 1999;11:699–704. doi: 10.1016/S0955-0674(99)00039-3. PubMed DOI
Hannan A.J. Tandem Repeats and Repeatomes: Delving Deeper into the ‘Dark Matter’ of Genomes. EBioMedicine. 2018;31:3–4. doi: 10.1016/j.ebiom.2018.04.004. PubMed DOI PMC
Arkhipova I.R., Yushenova I.A. Giant Transposons in Eukaryotes: Is Bigger Better? Genome Biol. Evol. 2019;11:906–918. doi: 10.1093/gbe/evz041. PubMed DOI PMC
Fontana F., Bruch R.M., Binkowski F.P., Lanfredi M., Chicca M., Beltrami N., Congiu L. Karyotype Characterization of the Lake Sturgeon, Acipenser fulvescens (Rafinesque 1817) by Chromosome Banding and Fluorescent in Situ Hybridization. Genome. 2004;47:742–746. doi: 10.1139/g04-028. PubMed DOI
Symonová R., Havelka M., Amemiya C.T., Howell W.M., Kořínková T., Flajšhans M., Gela D., Ráb P. Molecular Cytogenetic Differentiation of Paralogs of Hox Paralogs in Duplicated and Re-Diploidized Genome of the North American Paddlefish (Polyodon spathula) BMC Genet. 2017;18 doi: 10.1186/s12863-017-0484-8. PubMed DOI PMC
Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. “Holostei versus Halecostomi” Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia calva: Molecular Cytogenetics of Amia calva. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:620–628. doi: 10.1002/jez.b.22720. PubMed DOI
Gaffaroglu M., Majtánová Z., Symonová R., Pelikánová Š., Unal S., Lajbner Z., Ráb P. Present and Future Salmonid Cytogenetics. Genes. 2020;11:1462. doi: 10.3390/genes11121462. PubMed DOI PMC
Lien S., Koop B.F., Sandve S.R., Miller J.R., Kent M.P., Nome T., Hvidsten T.R., Leong J.S., Minkley D.R., Zimin A., et al. The Atlantic Salmon Genome Provides Insights into Rediploidization. Nature. 2016;533:200–205. doi: 10.1038/nature17164. PubMed DOI PMC
De-Kayne R., Zoller S., Feulner P.G.D. A de Novo Chromosome-level Genome Assembly of Coregonus sp. “Balchen”: One Representative of the Swiss Alpine Whitefish Radiation. Mol. Ecol. Resour. 2020;20:1093–1109. doi: 10.1111/1755-0998.13187. PubMed DOI PMC
Pearse D.E., Barson N.J., Nome T., Gao G., Campbell M.A., Abadía-Cardoso A., Anderson E.C., Rundio D.E., Williams T.H., Naish K.A., et al. Sex-Dependent Dominance Maintains Migration Supergene in Rainbow Trout. Nat. Ecol. Evol. 2019;3:1731–1742. doi: 10.1038/s41559-019-1044-6. PubMed DOI
Christensen K.A., Leong J.S., Sakhrani D., Biagi C.A., Minkley D.R., Withler R.E., Rondeau E.B., Koop B.F., Devlin R.H. Chinook Salmon (Oncorhynchus tshawytscha) Genome and Transcriptome. PLoS ONE. 2018;13:e0195461. doi: 10.1371/journal.pone.0195461. PubMed DOI PMC
Canapa A., Barucca M., Biscotti M.A., Forconi M., Olmo E. Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenet. Genome Res. 2015;147:217–239. doi: 10.1159/000444429. PubMed DOI
Nowoshilow S., Schloissnig S., Fei J.-F., Dahl A., Pang A.W.C., Pippel M., Winkler S., Hastie A.R., Young G., Roscito J.G., et al. The Axolotl Genome and the Evolution of Key Tissue Formation Regulators. Nature. 2018;554:50–55. doi: 10.1038/nature25458. PubMed DOI
Rodriguez F., Arkhipova I.R. Transposable Elements and Polyploid Evolution in Animals. Curr. Opin. Genet. Dev. 2018;49:115–123. doi: 10.1016/j.gde.2018.04.003. PubMed DOI PMC
Tarallo A., Angelini C., Sanges R., Yagi M., Agnisola C., D’Onofrio G. On the Genome Base Composition of Teleosts: The Effect of Environment and Lifestyle. BMC Genom. 2016;17 doi: 10.1186/s12864-016-2537-1. PubMed DOI PMC
Yi S., Streelman J.T. Genome Size Is Negatively Correlated with Effective Population Size in Ray-Finned Fish. Trends Genet. 2005;21:643–646. doi: 10.1016/j.tig.2005.09.003. PubMed DOI
Rolland J., Schluter D., Romiguier J. Vulnerability to Fishing and Life History Traits Correlate with the Load of Deleterious Mutations in Teleosts. Mol. Biol. Evol. 2020;37:2192–2196. doi: 10.1093/molbev/msaa067. PubMed DOI PMC
Tollis M., Boissinot S. The Evolutionary Dynamics of Transposable Elements in Eukaryote Genomes. In: Garrido-Ramos M.A., editor. Genome Dynamics. Volume 7. S. KARGER AG; Basel, Switzerland: 2012. pp. 68–91. PubMed
Bourgeois Y., Boissinot S. On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements. Genes. 2019;10:419. doi: 10.3390/genes10060419. PubMed DOI PMC
Kent T.V., Uzunović J., Wright S.I. Coevolution between Transposable Elements and Recombination. Philos. Trans. R. Soc. B Biol. Sci. 2017;372:20160458. doi: 10.1098/rstb.2016.0458. PubMed DOI PMC
Ruggiero R.P., Boissinot S. Variation in Base Composition Underlies Functional and Evolutionary Divergence in Non-LTR Retrotransposons. Mob. DNA. 2020;11 doi: 10.1186/s13100-020-00209-9. PubMed DOI PMC
Paudel R., Fedorova L., Fedorov A. Adapting Biased Gene Conversion Theory to Account for Intensive GC-Content Deterioration in the Human Genome by Novel Mutations. PLoS ONE. 2020;15:e0232167. doi: 10.1371/journal.pone.0232167. PubMed DOI PMC
Nam K., Ellegren H. Recombination Drives Vertebrate Genome Contraction. PLoS Genet. 2012;8:e1002680. doi: 10.1371/journal.pgen.1002680. PubMed DOI PMC
Abandoning the Isochore Theory Can Help Explain Genome Compositional Organization in Fish
Advances in Vertebrate (Cyto)Genomics Shed New Light on Fish Compositional Genome Evolution
GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics