Nucleotide composition of transposable elements likely contributes to AT/GC compositional homogeneity of teleost fish genomes
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31857829
PubMed Central
PMC6909575
DOI
10.1186/s13100-019-0195-y
PII: 195
Knihovny.cz E-zdroje
- Klíčová slova
- GC content, Genome evolution, Nucleotide composition, Teleost fish, Transposon,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Teleost fish genome size has been repeatedly demonstrated to positively correlate with the proportion of transposable elements (TEs). This finding might have far-reaching implications for our understanding of the evolution of nucleotide composition across vertebrates. Genomes of fish and amphibians are GC homogenous, with non-teleost gars being the single exception identified to date, whereas birds and mammals are AT/GC heterogeneous. The exact reason for this phenomenon remains controversial. Since TEs make up significant proportions of genomes and can quickly accumulate across genomes, they can potentially influence the host genome with their own GC content (GC%). However, the GC% of fish TEs has so far been neglected. RESULTS: The genomic proportion of TEs indeed correlates with genome size, although not as linearly as previously shown with fewer genomes, and GC% negatively correlates with genome size in the 33 fish genome assemblies analysed here (excluding salmonids). GC% of fish TE consensus sequences positively correlates with the corresponding genomic GC% in 29 species tested. Likewise, the GC contents of the entire repetitive vs. non-repetitive genomic fractions correlate positively in 54 fish species in Ensembl. However, among these fish species, there is also a wide variation in GC% between the main groups of TEs. Class II DNA transposons, predominant TEs in fish genomes, are significantly GC-poorer than Class I retrotransposons. The AT/GC heterogeneous gar genome contains fewer Class II TEs, a situation similar to fugu with its extremely compact and also GC-enriched but AT/GC homogenous genome. CONCLUSION: Our results reveal a previously overlooked correlation between GC% of fish genomes and their TEs. This applies to both TE consensus sequences as well as the entire repetitive genomic fraction. On the other hand, there is a wide variation in GC% across fish TE groups. These results raise the question whether GC% of TEs evolves independently of GC% of the host genome or whether it is driven by TE localization in the host genome. Answering these questions will help to understand how genomic GC% is shaped over time. Long-term accumulation of GC-poor(er) Class II DNA transposons might indeed have influenced AT/GC homogenization of fish genomes and requires further investigation.
Zobrazit více v PubMed
Li X-Q, Du D. Variation, evolution, and correlation analysis of C+G content and genome or chromosome size in different kingdoms and phyla. Zhang Z, editor. PLoS ONE. 2014;9:e88339. doi: 10.1371/journal.pone.0088339. PubMed DOI PMC
Bernardi G. Structural and evolutionary genomics natural selection in genome evolution. Amsterdam: Elsevier; 2005.
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, genome size, and evolutionary insights in animals. Cytogenet Genome Res. 2015;147:217–239. doi: 10.1159/000444429. PubMed DOI
Chalopin D, Naville M, Plard F, Galiana D, Volff J-N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol. 2015;7:567–580. doi: 10.1093/gbe/evv005. PubMed DOI PMC
Brynildsen W. Transposable elements in teleost fish: in silico exploration of TE activity, diversity and abundance across 74 teleost fish genomes: University Oslo; 2016. Available from: http://urn.nb.no/URN:NBN:no-55565
Shao F, Han M, Peng Z. Evolution and diversity of transposable elements in fish genomes. Sci Rep. 2019;9 Available from: http://www.nature.com/articles/s41598-019-51888-1. [cited 2019 Nov 21]. PubMed PMC
Gao B, Shen D, Xue S, Chen C, Cui H, Song C. The contribution of transposable elements to size variations between four teleost genomes. Mob DNA. 2016;7 Available from: http://www.mobilednajournal.com/content/7/1/4. [cited 2018 Mar 19]. PubMed PMC
Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016;48:427–437. doi: 10.1038/ng.3526. PubMed DOI PMC
Volff J-N, Bouneau L, Ozouf-Costaz C, Fischer C. Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet. 2003;19:674–678. doi: 10.1016/j.tig.2003.10.006. PubMed DOI
Gao Y, Gao Q, Zhang H, Wang L, Zhang F, Yang C, et al. Draft sequencing and analysis of the genome of pufferfish Takifugu flavidus. DNA Res. 2014;21:627–637. doi: 10.1093/dnares/dsu025. PubMed DOI PMC
Dasilva C, Hadji H, Ozouf-Costaz C, Nicaud S, Jaillon O, Weissenbach J, et al. Remarkable compartmentalization of transposable elements and pseudogenes in the heterochromatin of the Tetraodon nigroviridis genome. Proc Natl Acad Sci. 2002;99:13636–13641. doi: 10.1073/pnas.202284199. PubMed DOI PMC
Neafsey DE. Genome size evolution in pufferfish: a comparative analysis of Diodontid and Tetraodontid pufferfish genomes. Genome Res. 2003;13:821–830. doi: 10.1101/gr.841703. PubMed DOI PMC
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503. doi: 10.1038/nature12111. PubMed DOI PMC
Tørresen OK, Star B, Jentoft S, Reinar WB, Grove H, Miller JR, et al. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics. 2017;18 Available from: http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-3448-x. [cited 2018 Jan 18]. PubMed DOI PMC
Sotero-Caio CG, Platt RN, Suh A, Ray DA. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol Evol. 2017;9:161–177. doi: 10.1093/gbe/evw264. PubMed DOI PMC
Pritham EJ. Transposable elements and factors influencing their success in eukaryotes. J Hered. 2009;100:648–655. doi: 10.1093/jhered/esp065. PubMed DOI PMC
Kapusta A, Suh A, Feschotte C. Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci. 2017;114:E1460–E1469. doi: 10.1073/pnas.1616702114. PubMed DOI PMC
Fryxell KJ, Zuckerkandl E. Cytosine deamination plays a primary role in the evolution of mammalian isochores. Mol Biol Evol. 2000;17:1371–1383. doi: 10.1093/oxfordjournals.molbev.a026420. PubMed DOI
Mugal CF, Weber CC, Ellegren H. GC-biased gene conversion links the recombination landscape and demography to genomic base composition: GC-biased gene conversion drives genomic base composition across a wide range of species. BioEssays. 2015;37:1317–1326. doi: 10.1002/bies.201500058. PubMed DOI
Kent TV, Uzunović J, Wright SI. Coevolution between transposable elements and recombination. Philos Trans R Soc B Biol Sci. 2017;372:20160458. doi: 10.1098/rstb.2016.0458. PubMed DOI PMC
Baker Z, Schumer M, Haba Y, Bashkirova L, Holland C, Rosenthal GG, et al. Repeated losses of PRDM9-directed recombination despite the conservation of PRDM9 across vertebrates. eLife. 2017;6 Available from: https://elifesciences.org/articles/24133. [cited 2018 Nov 4]. PubMed PMC
Duret L, Hurst LD. The elevated GC content at exonic third sites is not evidence against neutralist models of isochore evolution. Mol Biol Evol. 2001;18:757–762. doi: 10.1093/oxfordjournals.molbev.a003858. PubMed DOI
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI
Duret L, Mouchiroud D, Gautier C. Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J Mol Evol. 1995;40:308–317. doi: 10.1007/BF00163235. PubMed DOI
Smit AF. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev. 1999;9:657–663. doi: 10.1016/S0959-437X(99)00031-3. PubMed DOI
Melodelima C, Gautier C. The GC-heterogeneity of teleost fishes. BMC Genomics. 2008;9:632. doi: 10.1186/1471-2164-9-632. PubMed DOI PMC
Halaimia-Toumi N, Casse N, Demattei MV, Renault S, Pradier E, Bigot Y, et al. The GC-rich transposon bytmar1 from the deep-sea hydrothermal crab, bythograea thermydron, may encode three transposase isoforms from a single ORF. J Mol Evol. 2004;59:747–760. doi: 10.1007/s00239-004-2665-0. PubMed DOI
Casse N, Bui QT, Nicolas V, Renault S, Bigot Y, Laulier M. Species sympatry and horizontal transfers of mariner transposons in marine crustacean genomes. Mol Phylogenet Evol. 2006;40:609–619. doi: 10.1016/j.ympev.2006.02.005. PubMed DOI
Bui Q-T, Delaurière L, Casse N, Nicolas V, Laulier M, Chénais B. Molecular characterization and phylogenetic position of a new mariner-like element in the coastal crab, Pachygrapsus marmoratus. Gene. 2007;396:248–256. doi: 10.1016/j.gene.2007.03.004. PubMed DOI
Ferguson AA, Jiang N. Pack-MULEs: recycling and reshaping genes through GC-biased acquisition. Mob Genet Elem. 2011;1:135–138. doi: 10.4161/mge.1.2.16948. PubMed DOI PMC
Dion-Côté A-M, Symonová R, Lamaze FC, Pelikánová Š, Ráb P, Bernatchez L. Standing chromosomal variation in Lake whitefish species pairs: the role of historical contingency and relevance for speciation. Mol Ecol. 2017;26:178–192. doi: 10.1111/mec.13816. PubMed DOI
Gregory TR. Animal genome size database. http://www.genomesize.com.
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41:D36–D42. doi: 10.1093/nar/gks1195. PubMed DOI PMC
Shao F, Wang J, Xu H, Peng Z. FishTEDB: a collective database of transposable elements identified in the complete genomes of fish. Database. 2018;2018. 10.1093/database/bax106. PubMed PMC
Macqueen DJ, Johnston IA. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc R Soc B Biol Sci. 2014;281:20132881. doi: 10.1098/rspb.2013.2881. PubMed DOI PMC
Symonová R, Majtánová Z, Arias-Rodriguez L, Mořkovský L, Kořínková T, Cavin L, et al. Genome compositional organization in gars shows more similarities to mammals than to other ray-finned fish: cytogenomics of gars. J Exp Zool B Mol Dev Evol. 2017;328:607–619. doi: 10.1002/jez.b.22719. PubMed DOI
Peona V, Weissensteiner MH, Suh A. How complete are “complete” genome assemblies?-an avian perspective. Mol Ecol Resour. 2018;18:1188–1195. doi: 10.1111/1755-0998.12933. PubMed DOI
Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46:D754–D761. doi: 10.1093/nar/gkx1098. PubMed DOI PMC
Brynildsen WR. Transposable elements in teleost fish – in silico explorations of TE activity, diversity and abundance across 74 teleost fish genomes. 2016.
Grandi FC, Rosser JM, Newkirk SJ, Yin J, Jiang X, Xing Z, et al. Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites. Genome Res. 2015;25:1135–1146. doi: 10.1101/gr.185132.114. PubMed DOI PMC
Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6 Available from: http://www.mobilednajournal.com/content/6/1/11. [cited 2018 Nov 4]. PubMed PMC
Abandoning the Isochore Theory Can Help Explain Genome Compositional Organization in Fish
Advances in Vertebrate (Cyto)Genomics Shed New Light on Fish Compositional Genome Evolution
Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution
GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics