GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics

. 2020 Dec 31 ; 12 (1) : . [epub] 20201231

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33396302

The study of fish cytogenetics has been impeded by the inability to produce G-bands that could assign chromosomes to their homologous pairs. Thus, the majority of karyotypes published have been estimated based on morphological similarities of chromosomes. The reason why chromosome G-banding does not work in fish remains elusive. However, the recent increase in the number of fish genomes assembled to the chromosome level provides a way to analyse this issue. We have developed a Python tool to visualize and quantify GC percentage (GC%) of both repeats and unique DNA along chromosomes using a non-overlapping sliding window approach. Our tool profiles GC% and simultaneously plots the proportion of repeats (rep%) in a color scale (or vice versa). Hence, it is possible to assess the contribution of repeats to the total GC%. The main differences are the GC% of repeats homogenizing the overall GC% along fish chromosomes and a greater range of GC% scattered along fish chromosomes. This may explain the inability to produce G-banding in fish. We also show an occasional banding pattern along the chromosomes in some fish that probably cannot be detected with traditional qualitative cytogenetic methods.

Zobrazit více v PubMed

Holmquist G.P. Evolution of chromosome bands: Molecular ecology of noncoding DNA. J. Mol. Evol. 1989;28:469–486. doi: 10.1007/BF02602928. PubMed DOI

Bickmore W., Craig J. Chapman & Hall. Landes Bioscience; New York, NY, USA: Austin, TX, USA: 1997. Chromosome bands: Patterns in the genome; Molecular Biology Intelligence Unit.

Holmquist G.P. Chromosome bands, their chromatin flavors, and their functional features. Am. J. Hum. Genet. 1992;51:17–37. PubMed PMC

Holmquist G.P. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.; Chichester, UK: 2005. Chromosomal Bands and Sequence Features.

Costantini M., Auletta F., Bernardi G. Isochore patterns and gene distributions in fish genomes. Genomics. 2007;90:364–371. doi: 10.1016/j.ygeno.2007.05.006. PubMed DOI

Melodelima C., Gautier C. The GC-heterogeneity of teleost fishes. BMC Genom. 2008;9:632. doi: 10.1186/1471-2164-9-632. PubMed DOI PMC

Blaxhall P.C. Chromosome karyotyping of fish using conventional and G-banding methods. J. Fish Biol. 1983;22:417–424. doi: 10.1111/j.1095-8649.1983.tb04763.x. DOI

Schmid M., Guttenbach M. Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma. 1988;97:101–114. doi: 10.1007/BF00327367. PubMed DOI

Medrano L., Bernardi G., Couturier J., Dutrillaux B., Bernardi G. Chromosome banding and genome compartmentalization in fishes. Chromosoma. 1988;96:178–183. doi: 10.1007/BF00331050. DOI

Arrighi F.E., Hsu T.C. Localization of heterochromatin in human chromosomes. Cytogenet. Genome Res. 1971;10:81–86. doi: 10.1159/000130130. PubMed DOI

Howell W.M., Black D.A. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia. 1980;36:1014–1015. doi: 10.1007/BF01953855. PubMed DOI

Sharma O.P., Tripathi N.K., Sharma K.K. Some Aspects of Chromosome Structure and Functions. Springer; Dordrecht, The Netherlands: 2002. A Review of Chromosome Banding in Fishes; pp. 109–122.

Toledo A., Viegas-Péquignot E., Foresti F., Filho T., Dutrillaux B. BrdU replication patterns demonstrating chromosome homoeologies in two fish species, genus. Eig. Cytogenet. Genome Res. 1988;48:117–120. doi: 10.1159/000132603. DOI

Lemieux N., Drouin R., Richer C.-L. High-resolution dynamic and morphological G-bandings (GBG and GTG): A comparative study. Hum. Genet. 1990;85:261–266. doi: 10.1007/BF00206742. PubMed DOI

Jankun M., Ocalewicz K., Woznicki P. Replication C- and Fluorescent Chromosome Banding Patterns in European Whitefish, Coregonus lavaretus L. Hereditas. 2004;128:195–199. doi: 10.1111/j.1601-5223.1998.00195.x. DOI

Fujiwara A., Nishida-Umehara C., Sakamoto T., Okamoto N., Nakayama I., Abe S. Improved fish lymphocyte culture for chromosome preparation. Genetica. 2001;111:77–89. doi: 10.1023/A:1013788626712. PubMed DOI

Salvadori S., Coluccia E., Cannas R., Cau A., Deiana A.M. Replication Banding in two Mediterranean Moray eels: Chromosomal Characterization and Comparison. Genetica. 2003;119:253–258. doi: 10.1023/B:GENE.0000003649.64247.5b. PubMed DOI

Salvadori S., Deiana A.M., Deidda F., Lobina C., Mulas A., Coluccia E. XX/XY sex chromosome system and chromosome markers in the snake eel Ophisurus serpens (Anguilliformes: Ophichtidae) Mar. Biol. Res. 2018;14:158–164. doi: 10.1080/17451000.2017.1406665. DOI

Hellmer A., Voiculescu I., Schempp W. Replication banding studies in two cyprinid fishes. Chromosoma. 1991;100:524–531. doi: 10.1007/BF00352203. DOI

Daga R.R., Thode G., Amores A. Chromosome complement, C-banding, Ag-NOR and replication banding in the zebrafish Danio rerio. Chromosome Res. 1996;4:29–32. doi: 10.1007/BF02254941. PubMed DOI

Molina W.F., Galetti P.M. Early replication banding in Leporinus species (Osteichthyes, Characiformes) bearing differentiated sex chromosomes (ZW) Genetica. 2007;130:153–160. doi: 10.1007/s10709-006-9002-z. PubMed DOI

Zhang Q., Wolters W., Tiersch T. Brief communication. Replication banding and sister-chromatid exchange of chromosomes of channel catfish (Ictalurus punctatus) J. Hered. 1998;89:348–353. doi: 10.1093/jhered/89.4.348. DOI

Fujiwara A., Fujiwara M., Nishida-Umehara C., Abe S., Masaoka T. Characterization of Japanese flounder karyotype by chromosome bandings and fluorescence in situ hybridization with DNA markers. Genetica. 2007;131:267–274. doi: 10.1007/s10709-006-9136-z. PubMed DOI

Grützner F., Lütjens G., Rovira C., Barnes D.W., Ropers H., Haaf T. Classical and molecular cytogenetics of the pufferfish (Tetraodon nigroviridis) Chromosome Res. 1999;7:655–662. doi: 10.1023/A:1009292220760. PubMed DOI

Schemczssen-Graeff Z., Barbosa P., Castro J.P., da Silva M., de Almeida M.C., Moreira-Filho O., Artoni R.F. Dynamics of Replication and Nuclear Localization of the B Chromosome in Kidney Tissue Cells in Astyanax scabripinnis (Teleostei: Characidae) Zebrafish. 2020;17:147–152. doi: 10.1089/zeb.2019.1756. PubMed DOI

Bernardi G. Structural and Evolutionary Genomics: Natural Selection in Genome Evolution. Elsevier; Amsterdam, The Netherlands: 2005.

Du K., Stöck M., Kneitz S., Klopp C., Woltering J.M., Adolfi M.C., Feron R., Prokopov D., Makunin A., Kichigin I., et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 2020;4:841–852. doi: 10.1038/s41559-020-1166-x. PubMed DOI PMC

NCBI Genome Browser. [(accessed on 30 September 2020)]; Available online: https://www.ncbi.nlm.nih.gov/genome/browse.

Symonová R., Howell W. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics. Genes. 2018;9:96. doi: 10.3390/genes9020096. PubMed DOI PMC

Schweizer D. Simultaneous fluorescent staining of R bands and specific heterochromatic regions (DA-DAPI bands) in human chromosomes. Cytogenet. Genome Res. 1980;27:190–193. doi: 10.1159/000131482. PubMed DOI

Schweizer D. Counterstain-enhanced chromosome banding. Hum. Genet. 1981;57:1–14. doi: 10.1007/BF00271159. PubMed DOI

Wang Y., Minoshima S., Shimizu N. Cot-1 banding of human chromosomes using fluorescence in situ hybridization with Cy3 labeling. Jpn. J. Hum. Genet. 1995;40:243–252. doi: 10.1007/BF01876182. PubMed DOI

Sumner A.T., Evans H.J., Buckland R.A. New Technique for Distinguishing between Human Chromosomes. Nat. New Biol. 1971;232:31–32. doi: 10.1038/newbio232031a0. PubMed DOI

Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Pokorná M.J., Doležálková M., Flajšhans M., Normandeau E., et al. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:607–619. doi: 10.1002/jez.b.22719. PubMed DOI

Varadharajan S., Rastas P., Löytynoja A., Matschiner M., Calboli F.C.F., Guo B., Nederbragt A.J., Jakobsen K.S., Merilä J. A high-quality assembly of the nine-spined stickleback (Pungitius pungitius) genome. Genome Biol. Evol. 2019;11:3291–3308. doi: 10.1093/gbe/evz240. PubMed DOI PMC

Verdugo R.A., Orostica K.Y. Global Visualization Tool of Genomic Data. Bioinformatics. 2016;32:2366–2368. doi: 10.1093/bioinformatics/btw137. PubMed DOI

Hunt S.E., McLaren W., Gil L., Thormann A., Schuilenburg H., Sheppard D., Parton A., Armean I.M., Trevanion S.J., Flicek P., et al. Ensembl variation resources. Database. 2018;2018 doi: 10.1093/database/bay119. PubMed DOI PMC

Smit A.F.A., Hubley R., Green P. RepeatMasker Open-4.0. [(accessed on 30 September 2020)]; Available online: http://www.repeatmasker.org2015.

Cock P.J.A., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B., et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–1423. doi: 10.1093/bioinformatics/btp163. PubMed DOI PMC

Gregory T.R. Animal Genome Size Database. [(accessed on 30 September 2020)]; Available online: http://www.genomesize.com.

Carducci F., Barucca M., Canapa A., Carotti E., Biscotti M.A. Mobile Elements in Ray-Finned Fish Genomes. Life. 2020;10:221. doi: 10.3390/life10100221. PubMed DOI PMC

Gao B., Shen D., Xue S., Chen C., Cui H., Song C. The contribution of transposable elements to size variations between four teleost genomes. Mob. DNA. 2016;7:4. doi: 10.1186/s13100-016-0059-7. PubMed DOI PMC

Shao F., Han M., Peng Z. Evolution and diversity of transposable elements in fish genomes. Sci. Rep. 2019;9:1–8. doi: 10.1038/s41598-019-51888-1. PubMed DOI PMC

Symonová R., Ocalewicz K., Kirtiklis L., Delmastro G.B., Pelikánová Š., Garcia S., Kovařík A. Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.) BMC Genom. 2017;18:391. doi: 10.1186/s12864-017-3774-7. PubMed DOI PMC

Supiwong W., Tanomtong A., Supanuam P., Seetapan K., Khakhong S., Sanoamuang L. Chromosomal Characteristic of Nile Tilapia (Oreochromis niloticus) from Mitotic and Meiotic Cell Division by T-Lymphocyte Cell Culture. Cytologia. 2013;78:9–14. doi: 10.1508/cytologia.78.9. DOI

Jankun M., Woznicki P., Furgala-Selezniow G. Chromosomal evolution in the three species of Holarctic fish of the Genus Coregonus (Salmoniformes) Adv. Limnol. 2005;60:25–37.

Bertollo L.A.C., Fontes M.S., Fenocchio A.S., Cano J. The X1X2Y sex chromosome system in the fish Hoplias malabaricus. I. G-, C- and chromosome replication banding. Chromosome Res. 1997;5:493–499. doi: 10.1023/A:1018477232354. PubMed DOI

Ocalewicz K. Identification of Early and Late Replicating Heterochromatic Regions on Platyfish (Xiphophorus maculatus) Chromosomes. Folia Biol. 2005;53:149–153. doi: 10.3409/173491605775142774. PubMed DOI

Lien S., Koop B.F., Sandve S.R., Miller J.R., Kent M.P., Nome T., Hvidsten T.R., Leong J.S., Minkley D.R., Zimin A., et al. The Atlantic salmon genome provides insights into rediploidization. Nature. 2016;533:200–205. doi: 10.1038/nature17164. PubMed DOI PMC

Aparicio S. Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes. Science. 2002;297:1301–1310. doi: 10.1126/science.1072104. PubMed DOI

Jaillon O., Aury J.-M., Brunet F., Petit J.-L., Stange-Thomann N., Mauceli E., Bouneau L., Fischer C., Ozouf-Costaz C., Bernot A., et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004;431:946–957. doi: 10.1038/nature03025. PubMed DOI

Symonová R., Suh A. Nucleotide composition of transposable elements likely contributes to AT/GC compositional homogeneity of teleost fish genomes. Mob. DNA. 2019;10:1–8. doi: 10.1186/s13100-019-0195-y. PubMed DOI PMC

Mugal C.F., Weber C.C., Ellegren H. GC-biased gene conversion links the recombination landscape and demography to genomic base composition: GC-biased gene conversion drives genomic base composition across a wide range of species. BioEssays. 2015;37:1317–1326. doi: 10.1002/bies.201500058. PubMed DOI

Montoya-Burgos J.I., Boursot P., Galtier N. Recombination explains isochores in mammalian genomes. Trends Genet. 2003;19:128–130. doi: 10.1016/S0168-9525(03)00021-0. PubMed DOI

Eyre-Walker A. Recombination and mammalian genome evolution. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1993;252:237–243. doi: 10.1098/rspb.1993.0071. PubMed DOI

de Mendoza A., Hatleberg W.L., Pang K., Leininger S., Bogdanovic O., Pflueger J., Buckberry S., Technau U., Hejnol A., Adamska M., et al. Convergent evolution of a vertebrate-like methylome in a marine sponge. Nat. Ecol. Evol. 2019;3:1464–1473. doi: 10.1038/s41559-019-0983-2. PubMed DOI PMC

Fryxell K.J., Zuckerkandl E. Cytosine Deamination Plays a Primary Role in the Evolution of Mammalian Isochores. Mol. Biol. Evol. 2000;17:1371–1383. doi: 10.1093/oxfordjournals.molbev.a026420. PubMed DOI

Wang R.Y.-H., Kuo K.C., Gehrke C.W., Huang L.-H., Ehrlich M. Heat- and alkali-induced deamination of 5-methylcytosine and cytosine residues in DNA. Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 1982;697:371–377. doi: 10.1016/0167-4781(82)90101-4. PubMed DOI

Mugal C.F., Arndt P.F., Holm L., Ellegren H. Evolutionary Consequences of DNA Methylation on the GC Content in Vertebrate Genomes. G3 Genes Genomes Genet. 2015;5:441–447. doi: 10.1534/g3.114.015545. PubMed DOI PMC

Bernardi G. The neoselectionist theory of genome evolution. Proc. Natl. Acad. Sci. USA. 2007;104:8385–8390. doi: 10.1073/pnas.0701652104. PubMed DOI PMC

Ruggiero R.P., Boissinot S. Variation in base composition underlies functional and evolutionary divergence in non-LTR retrotransposons. Mob. DNA. 2020;11:1–18. doi: 10.1186/s13100-020-00209-9. PubMed DOI PMC

Nelson J.S., Grande T., Wilson M.V.H. Fishes of the World. 5th ed. John Wiley & Sons; Hoboken, NJ, USA: 2016.

Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. “Holostei versus Halecostomi” Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia calva. J. Exp. Zool. B Mol. Dev. Evol. 2017;328:620–628. doi: 10.1002/jez.b.22720. PubMed DOI

Braasch I., Gehrke A.R., Smith J.J., Kawasaki K., Manousaki T., Pasquier J., Amores A., Desvignes T., Batzel P., Catchen J., et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 2016;48:427–437. doi: 10.1038/ng.3526. PubMed DOI PMC

Symonová R., Flajšhans M., Sember A., Havelka M., Gela D., Kořínková T., Rodina M., Rábová M., Ráb P. Molecular Cytogenetics in Artificial Hybrid and Highly Polyploid Sturgeons: An Evolutionary Story Narrated by Repetitive Sequences. Cytogenet. Genome Res. 2013;141:153–162. doi: 10.1159/000354882. PubMed DOI

Borůvková V., Howell W.M., Matoulek D., Symonová R. Quantitative approach to fish cytogenetics in the context of vertebrate genome evolution. Genes. 2021 (submitted) PubMed PMC

de Bello Cioffi M., Ráb P., Ezaz T., Antonio Carlos Bertollo L., Lavoué S., Aquiar de Oliveira E., Sember A., Molina F., Henrique Santos de Souza F., Majtánová Z., et al. Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from Comparative Cytogenomics. Int. J. Mol. Sci. 2019;20:4296. doi: 10.3390/ijms20174296. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace