Abandoning the Isochore Theory Can Help Explain Genome Compositional Organization in Fish

. 2023 Aug 24 ; 24 (17) : . [epub] 20230824

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37685974

Grantová podpora
No. 754462 Marie Skłodowska-Curie
ID LM2018131, MEYS CR Elixir CZ

The organization of the genome nucleotide (AT/GC) composition in vertebrates remains poorly understood despite the numerous genome assemblies available. Particularly, the origin of the AT/GC heterogeneity in amniotes, in comparison to the homogeneity in anamniotes, is controversial. Recently, several exceptions to this dichotomy were confirmed in an ancient fish lineage with mammalian AT/GC heterogeneity. Hence, our current knowledge necessitates a reevaluation considering this fact and utilizing newly available data and tools. We analyzed fish genomes in silico with as low user input as possible to compare previous approaches to assessing genome composition. Our results revealed a disparity between previously used plots of GC% and histograms representing the authentic distribution of GC% values in genomes. Previous plots heavily reduced the range of GC% values in fish to comply with the alleged AT/GC homogeneity and AT-richness of their genomes. We illustrate how the selected sequence size influences the clustering of GC% values. Previous approaches that disregarded chromosome and genome sizes, which are about three times smaller in fish than in mammals, distorted their results and contributed to the persisting confusion about fish genome composition. Chromosome size and their transposons may drive the AT/GC heterogeneity apparent on mammalian chromosomes, whereas far less in fishes.

Zobrazit více v PubMed

Elhaik E., Graur D. A Comparative Study and a Phylogenetic Exploration of the Compositional Architectures of Mammalian Nuclear Genomes. PLoS Comput. Biol. 2014;10:e1003925. doi: 10.1371/journal.pcbi.1003925. PubMed DOI PMC

Elhaik E., Graur D., Josić K., Landan G. Identifying Compositionally Homogeneous and Nonhomogeneous Domains within the Human Genome Using a Novel Segmentation Algorithm. Nucleic Acids Res. 2010;38:e158. doi: 10.1093/nar/gkq532. PubMed DOI PMC

Bohlin J., Pettersson J.H.-O. Evolution of Genomic Base Composition: From Single Cell Microbes to Multicellular Animals. Comput. Struct. Biotechnol. J. 2019;17:362–370. doi: 10.1016/j.csbj.2019.03.001. PubMed DOI PMC

Piovesan A., Pelleri M.C., Antonaros F., Strippoli P., Caracausi M., Vitale L. On the Length, Weight and GC Content of the Human Genome. BMC Res. Notes. 2019;12:106. doi: 10.1186/s13104-019-4137-z. PubMed DOI PMC

Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Pokorná M.J., Doležálková M., Flajšhans M., Normandeau E., et al. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish: Cytogenomics of Gars. J. Exp. Zool. B Mol. Dev. Evol. 2017;328:607–619. doi: 10.1002/jez.b.22719. PubMed DOI

Bernardi G. The Vertebrate Genome: Isochores and Evolution. Mol. Biol. Evol. 1993;10:186–204. doi: 10.1093/oxfordjournals.molbev.a039994. PubMed DOI

Bernardi G., Olofsson B., Filipski J., Zerial M., Salinas J., Cuny G., Meunier-Rotival M., Rodier F. The Mosaic Genome of Warm-Blooded Vertebrates. Science. 1985;228:953–958. doi: 10.1126/science.4001930. PubMed DOI

Macaya G., Thiery J.-P., Bernardi G. An Approach to the Organization of Eukaryotic Genomes at a Macromolecular Level. J. Mol. Biol. 1976;108:237–254. doi: 10.1016/S0022-2836(76)80105-2. PubMed DOI

Cozzi P., Milanesi L., Bernardi G. Segmenting the Human Genome into Isochores. Evol. Bioinform. Online. 2015;11:253–261. doi: 10.4137/EBO.S27693. PubMed DOI PMC

Bernardi G. Structural and Evolutionary Genomics Natural Selection in Genome Evolution. Elsevier; Amsterdam, The Netherlands: 2005.

Costantini M., Auletta F., Bernardi G. Isochore Patterns and Gene Distributions in Fish Genomes. Genomics. 2007;90:364–371. doi: 10.1016/j.ygeno.2007.05.006. PubMed DOI

Cammarano R., Costantini M., Bernardi G. The Isochore Patterns of Invertebrate Genomes. BMC Genom. 2009;10:538. doi: 10.1186/1471-2164-10-538. PubMed DOI PMC

Costantini M., Filippo M.D., Auletta F., Bernardi G. Isochore Pattern and Gene Distribution in the Chicken Genome. Gene. 2007;400:9–15. doi: 10.1016/j.gene.2007.05.025. PubMed DOI

Thiery J.-P., Macaya G., Bernardi G. An Analysis of Eukaryotic Genomes by Density Gradient Centrifugation. J. Mol. Biol. 1976;108:219–235. doi: 10.1016/S0022-2836(76)80104-0. PubMed DOI

Vizard D.L., Rinehart F.P., Rubin C.M., Schmid C.W. Intramolecular Base Composition Heterogeneity of Human DNA. Nucleic Acids Res. 1977;4:3753–3768. doi: 10.1093/nar/4.11.3753. PubMed DOI PMC

Corneo G., Nelli L.C., Meazza D., Ginelli E. Repeated Nucleotide Sequences in Human Main Band DNA. Biochim. Et Biophys. Acta (BBA) Nucleic Acids Protein Synth. 1980;607:438–444. doi: 10.1016/0005-2787(80)90154-9. PubMed DOI

Graur D. Slaying (Yet Again) the Brain-Eating Zombie Called the “Isochore Theory”: A Segmentation Algorithm Used to “Confirm” the Existence of Isochores Creates “Isochores” Where None Exist. Int. J. Mol. Sci. 2022;23:6558. doi: 10.3390/ijms23126558. PubMed DOI PMC

Cohen N., Dagan T., Stone L., Graur D. GC Composition of the Human Genome: In Search of Isochores. Mol. Biol. Evol. 2005;22:1260–1272. doi: 10.1093/molbev/msi115. PubMed DOI

Elhaik E. Compositional domains in fishes. Personal communication via emails. 2022.

Elhaik E., Landan G., Graur D. Can GC Content at Third-Codon Positions Be Used as a Proxy for Isochore Composition? Mol. Biol. Evol. 2009;26:1829–1833. doi: 10.1093/molbev/msp100. PubMed DOI

Honeybee Genome Sequencing Consortium The Honeybee Genome Sequencing Consortium Insights into Social Insects from the Genome of the Honeybee Apis Mellifera. Nature. 2006;443:931–949. doi: 10.1038/nature05260. PubMed DOI PMC

The Bovine Genome Sequencing and Analysis Consortium. Elsik C.G., Tellam R.L., Worley K.C., Gibbs R.A., Muzny D.M., Weinstock G.M., Adelson D.L., Eichler E.E., Elnitski L., et al. The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution. Science. 2009;324:522–528. doi: 10.1126/science.1169588. PubMed DOI PMC

Kirkness E.F., Haas B.J., Sun W., Braig H.R., Perotti M.A., Clark J.M., Lee S.H., Robertson H.M., Kennedy R.C., Elhaik E., et al. Genome Sequences of the Human Body Louse and Its Primary Endosymbiont Provide Insights into the Permanent Parasitic Lifestyle. Proc. Natl. Acad. Sci. USA. 2010;107:12168–12173. doi: 10.1073/pnas.1003379107. PubMed DOI PMC

Bernardi G., Hughes S., Mouchiroud D. The Major Compositional Transitions in the Vertebrate Genome. J. Mol. Evol. 1997;44:S44–S51. doi: 10.1007/PL00000051. PubMed DOI

Cruveiller S., D’Onofrio G., Bernardi G. The Compositional Transition between the Genomes of Cold- and Warm-Blooded Vertebrates: Codon Frequencies in Orthologous Genes. Gene. 2000;261:71–83. doi: 10.1016/S0378-1119(00)00520-5. PubMed DOI

Bernardi G. The Neoselectionist Theory of Genome Evolution. Proc. Natl. Acad. Sci. USA. 2007;104:8385–8390. doi: 10.1073/pnas.0701652104. PubMed DOI PMC

Matoulek D., Ježek B., Vohnoutová M., Symonová R. Advances in Vertebrate (Cyto)Genomics Shed New Light on Fish Compositional Genome Evolution. Genes. 2023;14:244. doi: 10.3390/genes14020244. PubMed DOI PMC

Bernardi G. Misunderstandings about Isochores. Part 1. Gene. 2001;276:3–13. doi: 10.1016/S0378-1119(01)00644-8. PubMed DOI

Clay O., Bernardi G. How Not to Search for Isochores: A Reply to Cohen et Al. Mol. Biol. Evol. 2005;22:2315–2317. doi: 10.1093/molbev/msi231. PubMed DOI

Costantini M., Greif G., Alvarez-Valin F., Bernardi G. The Anolis Lizard Genome: An Amniote Genome without Isochores? Genome Biol. Evol. 2016;8:1048–1055. doi: 10.1093/gbe/evw056. PubMed DOI PMC

Fujita M.K., Edwards S.V., Ponting C.P. The Anolis Lizard Genome: An Amniote Genome without Isochores. Genome Biol. Evol. 2011;3:974–984. doi: 10.1093/gbe/evr072. PubMed DOI PMC

Arhondakis S., Milanesi M., Castrignanò T., Gioiosa S., Valentini A., Chillemi G. Evidence of Distinct Gene Functional Patterns in GC-poor and GC-rich Isochores in Bos Taurus. Anim. Genet. 2020;51:358–368. doi: 10.1111/age.12917. PubMed DOI

Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. “Holostei versus Halecostomi” Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia Calva: Molecular Cytogenetics of Amia Calva. J. Exp. Zool. B Mol. Dev. Evol. 2017;328:620–628. doi: 10.1002/jez.b.22720. PubMed DOI

Braasch I., Gehrke A.R., Smith J.J., Kawasaki K., Manousaki T., Pasquier J., Amores A., Desvignes T., Batzel P., Catchen J., et al. The Spotted Gar Genome Illuminates Vertebrate Evolution and Facilitates Human-Teleost Comparisons. Nat. Genet. 2016;48:427–437. doi: 10.1038/ng.3526. PubMed DOI PMC

Gregory T.R. Animal Genome Size Database. 2022. [(accessed on 16 August 2023)]. Available online: https://www.genomesize.com/

Kim J., Lee C., Ko B.J., Yoo D.A., Won S., Phillippy A.M., Fedrigo O., Zhang G., Howe K., Wood J., et al. False Gene and Chromosome Losses in Genome Assemblies Caused by GC Content Variation and Repeats. Genome Biol. 2022;23:204. doi: 10.1186/s13059-022-02765-0. PubMed DOI PMC

Borůvková V., Howell W.M., Matoulek D., Symonová R. Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution. Genes. 2021;12:312. doi: 10.3390/genes12020312. PubMed DOI PMC

Pasquier J., Cabau C., Nguyen T., Jouanno E., Severac D., Braasch I., Journot L., Pontarotti P., Klopp C., Postlethwait J.H., et al. Gene Evolution and Gene Expression after Whole Genome Duplication in Fish: The PhyloFish Database. BMC Genom. 2016;17:368. doi: 10.1186/s12864-016-2709-z. PubMed DOI PMC

NCBI . National Library of Medicine (US) NCBI/Genome. NCBI; Bethesda, MD, USA: 2004.

Wilcox J.J.S., Arca-Ruibal B., Samour J., Mateuta V., Idaghdour Y., Boissinot S. Linked-Read Sequencing of Eight Falcons Reveals a Unique Genomic Architecture in Flux. Genome Biol. Evol. 2022;14:evac090. doi: 10.1093/gbe/evac090. PubMed DOI PMC

Ayad L.A.K., Dourou A.-M., Arhondakis S., Pissis S.P. IsoXpressor: A Tool to Assess Transcriptional Activity within Isochores. Genome Biol. Evol. 2020;12:1573–1578. doi: 10.1093/gbe/evaa171. PubMed DOI PMC

Thibaut Y., Tang N., Tran H.N., Vaurijoux A., Villagrasa C., Incerti S., Perrot Y. Nanodosimetric Calculations of Radiation-Induced DNA Damage in a New Nucleus Geometrical Model Based on the Isochore Theory. Int. J. Mol. Sci. 2022;23:3770. doi: 10.3390/ijms23073770. PubMed DOI PMC

Mugal C.F., Weber C.C., Ellegren H. GC-Biased Gene Conversion Links the Recombination Landscape and Demography to Genomic Base Composition: GC-Biased Gene Conversion Drives Genomic Base Composition across a Wide Range of Species. BioEssays. 2015;37:1317–1326. doi: 10.1002/bies.201500058. PubMed DOI

Ng S.B., Turner E.H., Robertson P.D., Flygare S.D., Bigham A.W., Lee C., Shaffer T., Wong M., Bhattacharjee A., Eichler E.E., et al. Targeted Capture and Massively Parallel Sequencing of 12 Human Exomes. Nature. 2009;461:272–276. doi: 10.1038/nature08250. PubMed DOI PMC

Symonová R., Suh A. Nucleotide Composition of Transposable Elements Likely Contributes to AT/GC Compositional Homogeneity of Teleost Fish Genomes. Mob. DNA. 2019;10:49. doi: 10.1186/s13100-019-0195-y. PubMed DOI PMC

Matoulek D., Borůvková V., Ocalewicz K., Symonová R. GC and Repeats Profiling along Chromosomes—The Future of Fish Compositional Cytogenomics. Genes. 2020;12:50. doi: 10.3390/genes12010050. PubMed DOI PMC

Thompson A.W., Hawkins M.B., Parey E., Wcisel D.J., Ota T., Kawasaki K., Funk E., Losilla M., Fitch O.E., Pan Q., et al. The Bowfin Genome Illuminates the Developmental Evolution of Ray-Finned Fishes. Nat. Genet. 2021;53:1373–1384. doi: 10.1038/s41588-021-00914-y. PubMed DOI PMC

Sotero-Caio C.G., Platt R.N., Suh A., Ray D.A. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol. Evol. 2017;9:161–177. doi: 10.1093/gbe/evw264. PubMed DOI PMC

Vohnoutová M., Žifčáková L., Symonová R. Hidden Compositional Heterogeneity of Fish Chromosomes in the Era of Polished Genome Assemblies. Fishes. 2023;8:185. doi: 10.3390/fishes8040185. DOI

Knytl M., Kalous L., Symonová R., Rylková K., Ráb P. Chromosome Studies of European Cyprinid Fishes: Cross-Species Painting Reveals Natural Allotetraploid Origin of a Carassius Female with 206 Chromosomes. Cytogenet. Genome Res. 2013;139:276–283. doi: 10.1159/000350689. PubMed DOI

Knytl M., Fornaini N. Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus Carassius. Cells. 2021;10:2343. doi: 10.3390/cells10092343. PubMed DOI PMC

Knytl M., Kalous L., Rab P. Karyotype and Chromosome Banding of Endangered Crucian Carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae) Comp. Cytogenet. 2013;7:205–213. doi: 10.3897/compcytogen.v7i3.5411. PubMed DOI PMC

Bertollo L.A.C., Fontes M.S., Fenocchio A.S., Cano J. The X1X2Y Sex Chromosome System in the Fish Hoplias malabaricus. I. G-, C- and Chromosome Replication Banding. Chromosome Res. 1997;5:493–499. doi: 10.1023/A:1018477232354. PubMed DOI

Gold J.R., Li Y.C. Trypsin G-Banding of North American Cyprinid Chromosomes: Phylogenetic Considerations, Implications for Fish Chromosome Structure, and Chromosomal Polymorphism. Cytologia. 1991;56:199–208. doi: 10.1508/cytologia.56.199. DOI

Medrano L., Bernardi G., Couturier J., Dutrillaux B., Bernardi G. Chromosome Banding and Genome Compartmentalization in Fishes. Chromosoma. 1988;96:178–183. doi: 10.1007/BF00331050. DOI

Wiberg U.H. Sex Determination in the European Eel (Anguilla anguilla, L.) Cytogenet Genome Res. 1983;36:589–598. doi: 10.1159/000131981. PubMed DOI

Gaffaroglu M., Majtánová Z., Symonová R., Pelikánová Š., Unal S., Lajbner Z., Ráb P. Present and Future Salmonid Cytogenetics. Genes. 2020;11:1462. doi: 10.3390/genes11121462. PubMed DOI PMC

Bi X., Wang K., Yang L., Pan H., Jiang H., Wei Q., Fang M., Yu H., Zhu C., Cai Y., et al. Tracing the Genetic Footprints of Vertebrate Landing in Non-Teleost Ray-Finned Fishes. Cell. 2021;184:1377–1391.e14. doi: 10.1016/j.cell.2021.01.046. PubMed DOI

Fisher W.D. On Grouping for Maximum Homogeneity. J. Am. Stat. Assoc. 1958;53:789–798. doi: 10.1080/01621459.1958.10501479. DOI

Coulson M.R.C. In The Matter of Class Intervals for Choropleth Maps: With Particular Reference to the Work of George F Jenks. Cartogr. Int. J. Geogr. Inf. Geovisualiz. 1987;24:16–39. doi: 10.3138/U7X0-1836-5715-3546. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace