Abandoning the Isochore Theory Can Help Explain Genome Compositional Organization in Fish
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. 754462
Marie Skłodowska-Curie
ID LM2018131, MEYS CR
Elixir CZ
PubMed
37685974
PubMed Central
PMC10487504
DOI
10.3390/ijms241713167
PII: ijms241713167
Knihovny.cz E-zdroje
- Klíčová slova
- AT/GC genome composition, GC-content evolution transposons, natural breaks,
- MeSH
- délka genomu MeSH
- isochory * genetika MeSH
- ryby * genetika MeSH
- savčí chromozomy MeSH
- savci MeSH
- shluková analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- isochory * MeSH
The organization of the genome nucleotide (AT/GC) composition in vertebrates remains poorly understood despite the numerous genome assemblies available. Particularly, the origin of the AT/GC heterogeneity in amniotes, in comparison to the homogeneity in anamniotes, is controversial. Recently, several exceptions to this dichotomy were confirmed in an ancient fish lineage with mammalian AT/GC heterogeneity. Hence, our current knowledge necessitates a reevaluation considering this fact and utilizing newly available data and tools. We analyzed fish genomes in silico with as low user input as possible to compare previous approaches to assessing genome composition. Our results revealed a disparity between previously used plots of GC% and histograms representing the authentic distribution of GC% values in genomes. Previous plots heavily reduced the range of GC% values in fish to comply with the alleged AT/GC homogeneity and AT-richness of their genomes. We illustrate how the selected sequence size influences the clustering of GC% values. Previous approaches that disregarded chromosome and genome sizes, which are about three times smaller in fish than in mammals, distorted their results and contributed to the persisting confusion about fish genome composition. Chromosome size and their transposons may drive the AT/GC heterogeneity apparent on mammalian chromosomes, whereas far less in fishes.
Zobrazit více v PubMed
Elhaik E., Graur D. A Comparative Study and a Phylogenetic Exploration of the Compositional Architectures of Mammalian Nuclear Genomes. PLoS Comput. Biol. 2014;10:e1003925. doi: 10.1371/journal.pcbi.1003925. PubMed DOI PMC
Elhaik E., Graur D., Josić K., Landan G. Identifying Compositionally Homogeneous and Nonhomogeneous Domains within the Human Genome Using a Novel Segmentation Algorithm. Nucleic Acids Res. 2010;38:e158. doi: 10.1093/nar/gkq532. PubMed DOI PMC
Bohlin J., Pettersson J.H.-O. Evolution of Genomic Base Composition: From Single Cell Microbes to Multicellular Animals. Comput. Struct. Biotechnol. J. 2019;17:362–370. doi: 10.1016/j.csbj.2019.03.001. PubMed DOI PMC
Piovesan A., Pelleri M.C., Antonaros F., Strippoli P., Caracausi M., Vitale L. On the Length, Weight and GC Content of the Human Genome. BMC Res. Notes. 2019;12:106. doi: 10.1186/s13104-019-4137-z. PubMed DOI PMC
Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Pokorná M.J., Doležálková M., Flajšhans M., Normandeau E., et al. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish: Cytogenomics of Gars. J. Exp. Zool. B Mol. Dev. Evol. 2017;328:607–619. doi: 10.1002/jez.b.22719. PubMed DOI
Bernardi G. The Vertebrate Genome: Isochores and Evolution. Mol. Biol. Evol. 1993;10:186–204. doi: 10.1093/oxfordjournals.molbev.a039994. PubMed DOI
Bernardi G., Olofsson B., Filipski J., Zerial M., Salinas J., Cuny G., Meunier-Rotival M., Rodier F. The Mosaic Genome of Warm-Blooded Vertebrates. Science. 1985;228:953–958. doi: 10.1126/science.4001930. PubMed DOI
Macaya G., Thiery J.-P., Bernardi G. An Approach to the Organization of Eukaryotic Genomes at a Macromolecular Level. J. Mol. Biol. 1976;108:237–254. doi: 10.1016/S0022-2836(76)80105-2. PubMed DOI
Cozzi P., Milanesi L., Bernardi G. Segmenting the Human Genome into Isochores. Evol. Bioinform. Online. 2015;11:253–261. doi: 10.4137/EBO.S27693. PubMed DOI PMC
Bernardi G. Structural and Evolutionary Genomics Natural Selection in Genome Evolution. Elsevier; Amsterdam, The Netherlands: 2005.
Costantini M., Auletta F., Bernardi G. Isochore Patterns and Gene Distributions in Fish Genomes. Genomics. 2007;90:364–371. doi: 10.1016/j.ygeno.2007.05.006. PubMed DOI
Cammarano R., Costantini M., Bernardi G. The Isochore Patterns of Invertebrate Genomes. BMC Genom. 2009;10:538. doi: 10.1186/1471-2164-10-538. PubMed DOI PMC
Costantini M., Filippo M.D., Auletta F., Bernardi G. Isochore Pattern and Gene Distribution in the Chicken Genome. Gene. 2007;400:9–15. doi: 10.1016/j.gene.2007.05.025. PubMed DOI
Thiery J.-P., Macaya G., Bernardi G. An Analysis of Eukaryotic Genomes by Density Gradient Centrifugation. J. Mol. Biol. 1976;108:219–235. doi: 10.1016/S0022-2836(76)80104-0. PubMed DOI
Vizard D.L., Rinehart F.P., Rubin C.M., Schmid C.W. Intramolecular Base Composition Heterogeneity of Human DNA. Nucleic Acids Res. 1977;4:3753–3768. doi: 10.1093/nar/4.11.3753. PubMed DOI PMC
Corneo G., Nelli L.C., Meazza D., Ginelli E. Repeated Nucleotide Sequences in Human Main Band DNA. Biochim. Et Biophys. Acta (BBA) Nucleic Acids Protein Synth. 1980;607:438–444. doi: 10.1016/0005-2787(80)90154-9. PubMed DOI
Graur D. Slaying (Yet Again) the Brain-Eating Zombie Called the “Isochore Theory”: A Segmentation Algorithm Used to “Confirm” the Existence of Isochores Creates “Isochores” Where None Exist. Int. J. Mol. Sci. 2022;23:6558. doi: 10.3390/ijms23126558. PubMed DOI PMC
Cohen N., Dagan T., Stone L., Graur D. GC Composition of the Human Genome: In Search of Isochores. Mol. Biol. Evol. 2005;22:1260–1272. doi: 10.1093/molbev/msi115. PubMed DOI
Elhaik E. Compositional domains in fishes. Personal communication via emails. 2022.
Elhaik E., Landan G., Graur D. Can GC Content at Third-Codon Positions Be Used as a Proxy for Isochore Composition? Mol. Biol. Evol. 2009;26:1829–1833. doi: 10.1093/molbev/msp100. PubMed DOI
Honeybee Genome Sequencing Consortium The Honeybee Genome Sequencing Consortium Insights into Social Insects from the Genome of the Honeybee Apis Mellifera. Nature. 2006;443:931–949. doi: 10.1038/nature05260. PubMed DOI PMC
The Bovine Genome Sequencing and Analysis Consortium. Elsik C.G., Tellam R.L., Worley K.C., Gibbs R.A., Muzny D.M., Weinstock G.M., Adelson D.L., Eichler E.E., Elnitski L., et al. The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution. Science. 2009;324:522–528. doi: 10.1126/science.1169588. PubMed DOI PMC
Kirkness E.F., Haas B.J., Sun W., Braig H.R., Perotti M.A., Clark J.M., Lee S.H., Robertson H.M., Kennedy R.C., Elhaik E., et al. Genome Sequences of the Human Body Louse and Its Primary Endosymbiont Provide Insights into the Permanent Parasitic Lifestyle. Proc. Natl. Acad. Sci. USA. 2010;107:12168–12173. doi: 10.1073/pnas.1003379107. PubMed DOI PMC
Bernardi G., Hughes S., Mouchiroud D. The Major Compositional Transitions in the Vertebrate Genome. J. Mol. Evol. 1997;44:S44–S51. doi: 10.1007/PL00000051. PubMed DOI
Cruveiller S., D’Onofrio G., Bernardi G. The Compositional Transition between the Genomes of Cold- and Warm-Blooded Vertebrates: Codon Frequencies in Orthologous Genes. Gene. 2000;261:71–83. doi: 10.1016/S0378-1119(00)00520-5. PubMed DOI
Bernardi G. The Neoselectionist Theory of Genome Evolution. Proc. Natl. Acad. Sci. USA. 2007;104:8385–8390. doi: 10.1073/pnas.0701652104. PubMed DOI PMC
Matoulek D., Ježek B., Vohnoutová M., Symonová R. Advances in Vertebrate (Cyto)Genomics Shed New Light on Fish Compositional Genome Evolution. Genes. 2023;14:244. doi: 10.3390/genes14020244. PubMed DOI PMC
Bernardi G. Misunderstandings about Isochores. Part 1. Gene. 2001;276:3–13. doi: 10.1016/S0378-1119(01)00644-8. PubMed DOI
Clay O., Bernardi G. How Not to Search for Isochores: A Reply to Cohen et Al. Mol. Biol. Evol. 2005;22:2315–2317. doi: 10.1093/molbev/msi231. PubMed DOI
Costantini M., Greif G., Alvarez-Valin F., Bernardi G. The Anolis Lizard Genome: An Amniote Genome without Isochores? Genome Biol. Evol. 2016;8:1048–1055. doi: 10.1093/gbe/evw056. PubMed DOI PMC
Fujita M.K., Edwards S.V., Ponting C.P. The Anolis Lizard Genome: An Amniote Genome without Isochores. Genome Biol. Evol. 2011;3:974–984. doi: 10.1093/gbe/evr072. PubMed DOI PMC
Arhondakis S., Milanesi M., Castrignanò T., Gioiosa S., Valentini A., Chillemi G. Evidence of Distinct Gene Functional Patterns in GC-poor and GC-rich Isochores in Bos Taurus. Anim. Genet. 2020;51:358–368. doi: 10.1111/age.12917. PubMed DOI
Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. “Holostei versus Halecostomi” Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia Calva: Molecular Cytogenetics of Amia Calva. J. Exp. Zool. B Mol. Dev. Evol. 2017;328:620–628. doi: 10.1002/jez.b.22720. PubMed DOI
Braasch I., Gehrke A.R., Smith J.J., Kawasaki K., Manousaki T., Pasquier J., Amores A., Desvignes T., Batzel P., Catchen J., et al. The Spotted Gar Genome Illuminates Vertebrate Evolution and Facilitates Human-Teleost Comparisons. Nat. Genet. 2016;48:427–437. doi: 10.1038/ng.3526. PubMed DOI PMC
Gregory T.R. Animal Genome Size Database. 2022. [(accessed on 16 August 2023)]. Available online: https://www.genomesize.com/
Kim J., Lee C., Ko B.J., Yoo D.A., Won S., Phillippy A.M., Fedrigo O., Zhang G., Howe K., Wood J., et al. False Gene and Chromosome Losses in Genome Assemblies Caused by GC Content Variation and Repeats. Genome Biol. 2022;23:204. doi: 10.1186/s13059-022-02765-0. PubMed DOI PMC
Borůvková V., Howell W.M., Matoulek D., Symonová R. Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution. Genes. 2021;12:312. doi: 10.3390/genes12020312. PubMed DOI PMC
Pasquier J., Cabau C., Nguyen T., Jouanno E., Severac D., Braasch I., Journot L., Pontarotti P., Klopp C., Postlethwait J.H., et al. Gene Evolution and Gene Expression after Whole Genome Duplication in Fish: The PhyloFish Database. BMC Genom. 2016;17:368. doi: 10.1186/s12864-016-2709-z. PubMed DOI PMC
NCBI . National Library of Medicine (US) NCBI/Genome. NCBI; Bethesda, MD, USA: 2004.
Wilcox J.J.S., Arca-Ruibal B., Samour J., Mateuta V., Idaghdour Y., Boissinot S. Linked-Read Sequencing of Eight Falcons Reveals a Unique Genomic Architecture in Flux. Genome Biol. Evol. 2022;14:evac090. doi: 10.1093/gbe/evac090. PubMed DOI PMC
Ayad L.A.K., Dourou A.-M., Arhondakis S., Pissis S.P. IsoXpressor: A Tool to Assess Transcriptional Activity within Isochores. Genome Biol. Evol. 2020;12:1573–1578. doi: 10.1093/gbe/evaa171. PubMed DOI PMC
Thibaut Y., Tang N., Tran H.N., Vaurijoux A., Villagrasa C., Incerti S., Perrot Y. Nanodosimetric Calculations of Radiation-Induced DNA Damage in a New Nucleus Geometrical Model Based on the Isochore Theory. Int. J. Mol. Sci. 2022;23:3770. doi: 10.3390/ijms23073770. PubMed DOI PMC
Mugal C.F., Weber C.C., Ellegren H. GC-Biased Gene Conversion Links the Recombination Landscape and Demography to Genomic Base Composition: GC-Biased Gene Conversion Drives Genomic Base Composition across a Wide Range of Species. BioEssays. 2015;37:1317–1326. doi: 10.1002/bies.201500058. PubMed DOI
Ng S.B., Turner E.H., Robertson P.D., Flygare S.D., Bigham A.W., Lee C., Shaffer T., Wong M., Bhattacharjee A., Eichler E.E., et al. Targeted Capture and Massively Parallel Sequencing of 12 Human Exomes. Nature. 2009;461:272–276. doi: 10.1038/nature08250. PubMed DOI PMC
Symonová R., Suh A. Nucleotide Composition of Transposable Elements Likely Contributes to AT/GC Compositional Homogeneity of Teleost Fish Genomes. Mob. DNA. 2019;10:49. doi: 10.1186/s13100-019-0195-y. PubMed DOI PMC
Matoulek D., Borůvková V., Ocalewicz K., Symonová R. GC and Repeats Profiling along Chromosomes—The Future of Fish Compositional Cytogenomics. Genes. 2020;12:50. doi: 10.3390/genes12010050. PubMed DOI PMC
Thompson A.W., Hawkins M.B., Parey E., Wcisel D.J., Ota T., Kawasaki K., Funk E., Losilla M., Fitch O.E., Pan Q., et al. The Bowfin Genome Illuminates the Developmental Evolution of Ray-Finned Fishes. Nat. Genet. 2021;53:1373–1384. doi: 10.1038/s41588-021-00914-y. PubMed DOI PMC
Sotero-Caio C.G., Platt R.N., Suh A., Ray D.A. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol. Evol. 2017;9:161–177. doi: 10.1093/gbe/evw264. PubMed DOI PMC
Vohnoutová M., Žifčáková L., Symonová R. Hidden Compositional Heterogeneity of Fish Chromosomes in the Era of Polished Genome Assemblies. Fishes. 2023;8:185. doi: 10.3390/fishes8040185. DOI
Knytl M., Kalous L., Symonová R., Rylková K., Ráb P. Chromosome Studies of European Cyprinid Fishes: Cross-Species Painting Reveals Natural Allotetraploid Origin of a Carassius Female with 206 Chromosomes. Cytogenet. Genome Res. 2013;139:276–283. doi: 10.1159/000350689. PubMed DOI
Knytl M., Fornaini N. Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus Carassius. Cells. 2021;10:2343. doi: 10.3390/cells10092343. PubMed DOI PMC
Knytl M., Kalous L., Rab P. Karyotype and Chromosome Banding of Endangered Crucian Carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae) Comp. Cytogenet. 2013;7:205–213. doi: 10.3897/compcytogen.v7i3.5411. PubMed DOI PMC
Bertollo L.A.C., Fontes M.S., Fenocchio A.S., Cano J. The X1X2Y Sex Chromosome System in the Fish Hoplias malabaricus. I. G-, C- and Chromosome Replication Banding. Chromosome Res. 1997;5:493–499. doi: 10.1023/A:1018477232354. PubMed DOI
Gold J.R., Li Y.C. Trypsin G-Banding of North American Cyprinid Chromosomes: Phylogenetic Considerations, Implications for Fish Chromosome Structure, and Chromosomal Polymorphism. Cytologia. 1991;56:199–208. doi: 10.1508/cytologia.56.199. DOI
Medrano L., Bernardi G., Couturier J., Dutrillaux B., Bernardi G. Chromosome Banding and Genome Compartmentalization in Fishes. Chromosoma. 1988;96:178–183. doi: 10.1007/BF00331050. DOI
Wiberg U.H. Sex Determination in the European Eel (Anguilla anguilla, L.) Cytogenet Genome Res. 1983;36:589–598. doi: 10.1159/000131981. PubMed DOI
Gaffaroglu M., Majtánová Z., Symonová R., Pelikánová Š., Unal S., Lajbner Z., Ráb P. Present and Future Salmonid Cytogenetics. Genes. 2020;11:1462. doi: 10.3390/genes11121462. PubMed DOI PMC
Bi X., Wang K., Yang L., Pan H., Jiang H., Wei Q., Fang M., Yu H., Zhu C., Cai Y., et al. Tracing the Genetic Footprints of Vertebrate Landing in Non-Teleost Ray-Finned Fishes. Cell. 2021;184:1377–1391.e14. doi: 10.1016/j.cell.2021.01.046. PubMed DOI
Fisher W.D. On Grouping for Maximum Homogeneity. J. Am. Stat. Assoc. 1958;53:789–798. doi: 10.1080/01621459.1958.10501479. DOI
Coulson M.R.C. In The Matter of Class Intervals for Choropleth Maps: With Particular Reference to the Work of George F Jenks. Cartogr. Int. J. Geogr. Inf. Geovisualiz. 1987;24:16–39. doi: 10.3138/U7X0-1836-5715-3546. DOI