microchromosomes
Dotaz
Zobrazit nápovědu
We report on a major update to the animal rDNA loci database, which now contains cytogenetic information for 45S and 5S rDNA loci in more than 2600 and 1000 species, respectively.The data analyses show the following: (i) A high variability in 5S and 45S loci numbers, with both showing 50-fold or higher variability. However, karyotypes with an extremely high number of loci were rare, and medians generally converged to two 5S sites and two 45S rDNA sites per diploid genome. No relationship was observed between the number of 5S and 45S loci. (ii) The position of 45S rDNA on sex chromosomes was relatively frequent in some groups, particularly in arthropods (14% of karyotypes). Furthermore, 45S rDNA was almost exclusively located in microchromosomes when these were present (in birds and reptiles). (iii) The proportion of active NORs (positively stained with silver staining methods) progressively decreased with an increasing number of 45S rDNA loci, and karyotypes with more than 12 loci showed, on average, less than 40% of active loci. In conclusion, the updated version of the database provides some new insights into the organization of rRNA genes in chromosomes. We expect that its updated content will be useful for taxonomists, comparative cytogeneticists, and evolutionary biologists. .
Our novel Python-based tool EVANGELIST allows the visualization of GC and repeats percentages along chromosomes in sequenced genomes and has enabled us to perform quantitative large-scale analyses on the chromosome level in fish and other vertebrates. This is a different approach from the prevailing analyses, i.e., analyses of GC% in the coding sequences that make up not more than 2% in human. We identified GC content (GC%) elevations in microchromosomes in ancient fish lineages similar to avian microchromosomes and a large variability in the relationship between the chromosome size and their GC% across fish lineages. This raises the question as to what extent does the chromosome size drive GC% as posited by the currently accepted explanation based on the recombination rate. We ascribe the differences found across fishes to varying GC% of repetitive sequences. Generally, our results suggest that the GC% of repeats and proportion of repeats are independent of the chromosome size. This leaves an open space for another mechanism driving the GC evolution in vertebrates.
- MeSH
- chromozomy genetika MeSH
- cytogenetika * MeSH
- genom genetika MeSH
- molekulární evoluce * MeSH
- obratlovci klasifikace genetika MeSH
- ptáci klasifikace genetika MeSH
- rekombinace genetická genetika MeSH
- repetitivní sekvence nukleových kyselin MeSH
- ryby klasifikace genetika MeSH
- zastoupení bazí genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Turtles, a speciose group consisting of more than 300 species, demonstrate karyotypes with diploid chromosome numbers ranging from 2n = 26 to 2n = 68. However, cytogenetic analyses have been conducted only to 1/3rd of the turtle species, often limited to conventional staining methods. In order to expand our knowledge of the karyotype evolution in turtles, we examined the topology of the (TTAGGG)n telomeric repeats and the rDNA loci by fluorescence in situ hybridization (FISH) on the karyotypes of two emydids: the Sicilian pond turtle, Emys trinacris, and the yellow-bellied slider, Trachemys scripta scripta (family Emydidae). Furthermore, AT-rich and GC-rich chromosome regions were detected by DAPI and CMA3 stains, respectively. The cytogenetic analysis revealed that telomeric sequences are restricted to the terminal ends of all chromosomes and the rDNA loci are localized in one pair of microchromosomes in both species. The karyotype of the Sicilian endemic E. trinacris with diploid number 2n = 50, consisting of 13 pairs of macrochromosomes and 12 pairs of microchromosomes, is presented here for first time. Our comparative examination revealed similar cytogenetic features in Emys trinacris and the closely related E. orbicularis, as well as to other previously studied emydid species, demonstrating a low rate of karyotype evolution, as chromosomal rearrangements are rather infrequent in this group of turtles.
- MeSH
- cytogenetika metody MeSH
- hybridizace in situ fluorescenční metody MeSH
- karyotyp * MeSH
- molekulární evoluce * MeSH
- ribozomální DNA genetika MeSH
- telomery genetika MeSH
- želvy genetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Turtles demonstrate variability in sex determination and, hence, constitute an excellent model for the evolution of sex chromosomes. Notably, the sex determination of the freshwater turtles from the family Chelidae, a species-rich group with wide geographical distribution in the southern hemisphere, is still poorly explored. Here we documented the presence of an XX/XY sex determination system in seven species of the Australasian chelid genera Chelodina, Emydura, and Elseya by conventional (karyogram reconstruction, C-banding) and molecular cytogenetic methods (comparative genome hybridization, in situ hybridization with probes specific for GATA microsatellite motif, the rDNA loci, and the telomeric repeats). The sex chromosomes are microchromosomes in all examined species of the genus Chelodina. In contrast, the sex chromosomes are the 4th largest pair of macrochromosomes in the genera Emydura and Elseya. Their X chromosomes are submetacentric, while their Y chromosomes are metacentric. The chelid Y chromosomes contain a substantial male-specific genomic region with an accumulation of the GATA microsatellite motif, and occasionally, of the rDNA loci and telomeric repeats. Despite morphological differences between sex chromosomes, we conclude that male heterogamety was likely already present in the common ancestor of Chelodina, Emydura and Elseya in the Mesozoic period.
- MeSH
- chromozom X genetika MeSH
- chromozom Y genetika MeSH
- genom * MeSH
- karyotyp MeSH
- mikrosatelitní repetice MeSH
- molekulární evoluce * MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví MeSH
- želvy MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite their long history with the basal split dating back to the Eocene, all species of monitor lizards (family Varanidae) studied so far share the same chromosome number of 2n = 40. However, there are differences in the morphology of the macrochromosome pairs 5-8. Further, sex determination, which revealed ZZ/ZW sex microchromosomes, was studied only in a few varanid species and only with techniques that did not test their homology. The aim of this study was to (i) test if cryptic interchromosomal rearrangements of larger chromosomal blocks occurred during the karyotype evolution of this group, (ii) contribute to the reconstruction of the varanid ancestral karyotype, and (iii) test homology of sex chromosomes among varanids. We investigated these issues by hybridizing flow sorted chromosome paints from Varanus komodoensis to metaphases of nine species of monitor lizards. The results show that differences in the morphology of the chromosome pairs 5-8 can be attributed to intrachromosomal rearrangements, which led to transitions between acrocentric and metacentric chromosomes in both directions. We also documented the first case of spontaneous triploidy among varanids in Varanus albigularis. The triploid individual was fully grown, which demonstrates that polyploidization is compatible with life in this lineage. We found that the W chromosome differs between species in size and heterochromatin content. The varanid Z chromosome is clearly conserved in all the analyzed species. Varanids, in addition to iguanas, caenophidian snakes, and lacertid lizards, are another squamate group with highly conserved sex chromosomes over a long evolutionary time.
- MeSH
- heterochromatin genetika MeSH
- ještěři genetika MeSH
- karyotyp MeSH
- karyotypizace metody MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Acipenseriformes is a basal lineage of ray-finned fishes and comprise 27 extant species of sturgeons and paddlefishes. They are characterized by several specific genomic features as broad ploidy variation, high chromosome numbers, presence of numerous microchromosomes and propensity to interspecific hybridization. The presumed palaeotetraploidy of the American paddlefish was recently validated by molecular phylogeny and Hox genes analyses. A whole genome duplication in the paddlefish lineage was estimated at approximately 42 Mya and was found to be independent from several genome duplications evidenced in its sister lineage, i.e. sturgeons. We tested the ploidy status of available chromosomal markers after the expected rediploidization. Further we tested, whether paralogs of Hox gene clusters originated from this paddlefish specific genome duplication are cytogenetically distinguishable. RESULTS: We found that both paralogs HoxA alpha and beta were distinguishable without any overlapping of the hybridization signal - each on one pair of large metacentric chromosomes. Of the HoxD, only the beta paralog was unequivocally identified, whereas the alpha paralog did not work and yielded only an inconclusive diffuse signal. Chromosomal markers on three diverse ploidy levels reflecting different stages of rediploidization were identified: quadruplets retaining their ancestral tetraploid condition, semi-quadruplets still reflecting the ancestral tetraploidy with clear signs of advanced rediploidization, doublets were diploidized with ancestral tetraploidy already blurred. Also some of the available microsatellite data exhibited diploid allelic band patterns at their loci whereas another locus showed more than two alleles. CONCLUSIONS: Our exhaustive staining of paddlefish chromosomes combined with cytogenetic mapping of ribosomal genes and Hox paralogs and with microsatellite data, brings a closer look at results of the process of rediploidization in the course of paddlefish genome evolution. We show a partial rediploidization represented by a complex mosaic structure comparable with segmental paleotetraploidy revealed in sturgeons (Acipenseridae). Sturgeons and paddlefishes with their high propensity for whole genome duplication thus offer suitable animal model systems to further explore evolutionary processes that were shaping the early evolution of all vertebrates.
- MeSH
- diploidie * MeSH
- duplikace genu * MeSH
- genomika * MeSH
- genotypizační techniky MeSH
- hybridizace in situ fluorescenční * MeSH
- mikrosatelitní repetice genetika MeSH
- ribozomy genetika MeSH
- rybí proteiny genetika MeSH
- ryby genetika MeSH
- sekvenční homologie nukleových kyselin * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The Komodo dragon (Varanus komodoensis) is the largest lizard in the world. Surprisingly, it has not yet been cytogenetically examined. Here, we present the very first description of its karyotype and sex chromosomes. The karyotype consists of 2n = 40 chromosomes, 16 macrochromosomes and 24 microchromosomes. Although the chromosome number is constant for all species of monitor lizards (family Varanidae) with the currently reported karyotype, variability in the morphology of the macrochromosomes has been previously documented within the group. We uncovered highly differentiated ZZ/ZW sex microchromosomes with a heterochromatic W chromosome in the Komodo dragon. Sex chromosomes have so far only been described in a few species of varanids including V. varius, the sister species to Komodo dragon, whose W chromosome is notably larger than that of the Komodo dragon. Accumulations of several microsatellite sequences in the W chromosome have recently been detected in 3 species of monitor lizards; however, these accumulations are absent from the W chromosome of the Komodo dragon. In conclusion, although varanids are rather conservative in karyotypes, their W chromosomes exhibit substantial variability at the sequence level, adding further evidence that degenerated sex chromosomes may represent the most dynamic genome part.
A wide variety of sex determination systems exist among squamate reptiles. They can therefore serve as an important model for studies of evolutionary transitions among particular sex determination systems. However, we still have only a limited knowledge of sex determination in certain important lineages of squamates. In this respect, one of the most understudied groups is the family Helodermatidae (Anguimorpha) encompassing the only two venomous species of lizards which are potentially lethal to human beings. We uncovered homomorphic ZZ/ZW sex chromosomes in the Gila monster (Heloderma suspectum) with a highly heterochromatic W chromosome. The sex chromosomes are morphologically similar to the ZZ/ZW sex chromosomes of monitor lizards (Varanidae). If the sex chromosomes of helodermatids and varanids are homologous, female heterogamety may be ancestral for the whole Anguimorpha group. Moreover, we found that the karyotype of the Gila monster consists of 2n = 36 chromosomes (14 larger metacentric chromosomes and 22 acrocentric microchromosomes). 2n = 36 is the widely distributed chromosomal number among squamates. In his pioneering works representing the only previous cytogenetic examination of the family Helodermatidae, Matthey reported the karyotype as 2n = 38 and suggested a different chromosomal morphology for this species. We believe that this was probably erroneously. We also discovered a strong accumulation of telomeric sequences on several pairs of microchromosomes in the Gila monster, which is a trait documented relatively rarely in vertebrates. These new data fill an important gap in our understanding of the sex determination and karyotype evolution of squamates.
- MeSH
- hybridizace in situ MeSH
- ještěři genetika fyziologie MeSH
- karyotypizace MeSH
- mitochondriální DNA genetika MeSH
- počítačové zpracování obrazu MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví genetika fyziologie MeSH
- srovnávací genomová hybridizace MeSH
- taxonomické DNA čárové kódování MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The karyotype and other chromosomal characteristics the crucian carp (Carassius carassius (Linnaeus, 1758)) were revealed by means of conventional banding protocols (C, CMA3, AgNOR). The diploid chromosome number (2n) in this species was 100. Its karyotype was composed of 10 pairs of metacentric, 18 pairs of submetacentric and 22 pairs of subtelo- to acrocentric chromosomes without any microchromosomes. C-banding identified blocks of telomeric heterochromatin on seven chromosome pairs. The NORs were situated on the p arms of the 14(th) pair of submetacentric chromosomes and on the p arms of the 32(nd) pair of subtelo-acrocentric chromosomes; AgNOR-positive signals corresponded to the CMA3-positive signals. These chromosome characteristics may suggest a paleo-allotetraploid origin of Carassius carassius genome.
- Publikační typ
- časopisecké články MeSH