Phenylbutyrate rescues the transport defect of the Sec61α mutations V67G and T185A for renin
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35064074
PubMed Central
PMC8807872
DOI
10.26508/lsa.202101150
PII: 5/4/e202101150
Knihovny.cz E-zdroje
- MeSH
- endoplazmatické retikulum metabolismus MeSH
- fenylbutyráty metabolismus farmakologie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- missense mutace MeSH
- molekulární chaperony metabolismus MeSH
- nemoci ledvin patofyziologie MeSH
- polycystická choroba ledvin MeSH
- renin genetika metabolismus MeSH
- sarkoplazmatická Ca2+-ATPáza metabolismus MeSH
- translokační kanály SEC chemie genetika metabolismus MeSH
- transport proteinů genetika MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 4-phenylbutyric acid MeSH Prohlížeč
- ATP2A2 protein, human MeSH Prohlížeč
- fenylbutyráty MeSH
- molekulární chaperony MeSH
- renin MeSH
- sarkoplazmatická Ca2+-ATPáza MeSH
- SEC61A1 protein, human MeSH Prohlížeč
- translokační kanály SEC MeSH
- vápník MeSH
The human Sec61 complex is a widely distributed and abundant molecular machine. It resides in the membrane of the endoplasmic reticulum to channel two types of cargo: protein substrates and calcium ions. The SEC61A1 gene encodes for the pore-forming Sec61α subunit of the Sec61 complex. Despite their ubiquitous expression, the idiopathic SEC61A1 missense mutations p.V67G and p.T185A trigger a localized disease pattern diagnosed as autosomal dominant tubulointerstitial kidney disease (ADTKD-SEC61A1). Using cellular disease models for ADTKD-SEC61A1, we identified an impaired protein transport of the renal secretory protein renin and a reduced abundance of regulatory calcium transporters, including SERCA2. Treatment with the molecular chaperone phenylbutyrate reversed the defective protein transport of renin and the imbalanced calcium homeostasis. Signal peptide substitution experiments pointed at targeting sequences as the cause for the substrate-specific impairment of protein transport in the presence of the V67G or T185A mutations. Similarly, dominant mutations in the signal peptide of renin also cause ADTKD and point to impaired transport of this renal hormone as important pathogenic feature for ADTKD-SEC61A1 patients as well.
Center for Bioinformatics Saarland University Saarbrücken Germany
Department of Chemistry University of Nevada Reno NV USA
Department of Medical Biochemistry and Molecular Biology Saarland University Homburg Germany
Section on Nephrology Wake Forest School of Medicine Winston Salem NC USA
Zobrazit více v PubMed
Akopian D, Shen K, Zhang X, Shan S-o (2013) Signal recognition particle: An essential protein-targeting machine. Annu Rev Biochem 82: 693–721. 10.1146/annurev-biochem-072711-164732 PubMed DOI PMC
Aviram N, Schuldiner M (2017) Targeting and translocation of proteins to the endoplasmic reticulum at a glance. J Cell Sci 130: 4079–4085. 10.1242/jcs.204396 PubMed DOI
Ayasreh N, Miquel R, Matamala A, Ars E, Torra R (2017) A review on autosomal dominant tubulointerstitial kidney disease. Nefrologia 37: 235–243. 10.1016/j.nefroe.2017.05.012 PubMed DOI
Beck BB, Trachtman H, Gitman M, Miller I, Sayer JA, Pannes A, Baasner A, Hildebrandt F, Wolf MTF (2011) Autosomal dominant mutation in the signal peptide of renin in a kindred with anemia, hyperuricemia, and ckd. Am J Kidney Dis 58: 821–825. 10.1053/j.ajkd.2011.06.029 PubMed DOI PMC
Becker T, Bhushan S, Jarasch A, Armache JP, Funes S, Jossinet F, Gumbart J, Mielke T, Berninghausen O, Schulten K, et al. (2009) Structure of monomeric yeast and mammalian sec61 complexes interacting with the translating ribosome. Science 326: 1369–1373. 10.1126/science.1178535 PubMed DOI PMC
Behnke J, Feige MJ, Hendershot LM (2015) Bip and its nucleotide exchange factors grp170 and sil1: Mechanisms of action and biological functions. J Mol Biol 427: 1589–1608. 10.1016/j.jmb.2015.02.011 PubMed DOI PMC
Berna-Erro A, Woodard GE, Rosado JA (2012) Orais and stims: Physiological mechanisms and disease. J Cell Mol Med 16: 407–424. 10.1111/j.1582-4934.2011.01395.x PubMed DOI PMC
Bleyer AJ, Kidd K, Živná M, Kmoch S (2007) Autosomal dominant tubulointerstitial kidney disease – umod. In GeneReviews, Adam MP, Ardinger HH, Pagon RA (eds). GeneReviews, pp 1993–2022. Seattle, WA: University of Washington, Seattle. PubMed PMC
Bleyer AJ, Kidd K, Živná M, Kmoch S (2017) Autosomal dominant tubulointerstitial kidney disease. Adv Chronic Kidney Dis 24: 86–93. 10.1053/j.ackd.2016.11.012 PubMed DOI PMC
Bleyer AJ, Zivná M, Hulková H, Hodanová K, Vyletal P, Sikora J, Zivný J, Sovová J, Hart TC, Adams JN, et al. (2010) Clinical and molecular characterization of a family with a dominant renin gene mutation and response to treatment with fludrocortisone. Clin Nephrol 74: 411–422. 10.5414/cnp74411 PubMed DOI PMC
Bolar NA, Golzio C, Živná M, Hayot G, Van Hemelrijk C, Schepers D, Vandeweyer G, Hoischen A, Huyghe Jeroen R, Raes A, et al. (2016) Heterozygous loss-of-function sec61a1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet 99: 174–187. 10.1016/j.ajhg.2016.05.028 PubMed DOI PMC
Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: Discovery to translation. Nat Rev Genet 14: 681–691. 10.1038/nrg3555 PubMed DOI
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C (2010) Physiology of kidney renin. Physiol Rev 90: 607–673. 10.1152/physrev.00011.2009 PubMed DOI
Clapham DE (2007) Calcium signaling. Cell 131: 1047–1058. 10.1016/j.cell.2007.11.028 PubMed DOI
Coe H, Michalak M (2009) Calcium binding chaperones of the endoplasmic reticulum. General Physiol Biophys 28: F96–F103. PubMed
de Juan-Sanz J, Holt GT, Schreiter ER, de Juan F, Kim DS, Ryan TA (2017) Axonal endoplasmic reticulum ca(2+) content controls release probability in cns nerve terminals. Neuron 93: 867–881.e6. 10.1016/j.neuron.2017.01.010 PubMed DOI PMC
Denks K, Vogt A, Sachelaru I, Petriman N-A, Kudva R, Koch H-G (2014) The sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 31: 58–84. 10.3109/09687688.2014.907455 PubMed DOI
Devuyst O, Olinger E, Weber S, Eckardt K-U, Kmoch S, Rampoldi L, Bleyer AJ (2019) Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers 5: 60. 10.1038/s41572-019-0109-9 PubMed DOI
Dudek J, Lang S, Schorr S, Linxweiler J, Greiner M, Zimmermann R (2013) Analysis of protein translocation into the endoplasmic reticulum of human cells. Methods Mol Biol 1033: 285–299. 10.1007/978-1-62703-487-6_18 PubMed DOI
Dudek J, Pfeffer S, Lee P-H, Jung M, Cavalié A, Helms V, Förster F, Zimmermann R (2015) Protein transport into the human endoplasmic reticulum. J Mol Biol 427: 1159–1175. 10.1016/j.jmb.2014.06.011 PubMed DOI
Eckardt K-U, Alper SL, Antignac C, Bleyer AJ, Chauveau D, Dahan K, Deltas C, Hosking A, Kmoch S, Rampoldi L, et al. (2015) Autosomal dominant tubulointerstitial kidney disease: Diagnosis, classification, and management—A kdigo consensus report. Kidney Int 88: 676–683. 10.1038/ki.2015.28 PubMed DOI
Egea PF, Stroud RM (2010) Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci U S A 107: 17182–17187. 10.1073/pnas.1012556107 PubMed DOI PMC
Erdmann F, Jung M, Eyrisch S, Lang S, Helms V, Wagner R, Zimmermann R (2009) Lanthanum ions inhibit the mammalian sec61 complex in its channel dynamics and protein transport activity. FEBS Lett 583: 2359–2364. 10.1016/j.febslet.2009.06.032 PubMed DOI
Erdmann F, Schäuble N, Lang S, Jung M, Honigmann A, Ahmad M, Dudek J, Benedix J, Harsman A, Kopp A, et al. (2011) Interaction of calmodulin with sec61alpha limits ca2+ leakage from the endoplasmic reticulum. EMBO J 30: 17–31. 10.1038/emboj.2010.284 PubMed DOI PMC
Espino-Hernández M, Palma Milla C, Vara-Martín J, González-Granado LI (2021) De novo sec61a1 mutation in autosomal dominant tubulo-interstitial kidney disease: Phenotype expansion and review of literature. J Paediatrics Child Health 57: 1305–1307. 10.1111/jpc.15148 PubMed DOI
Gamayun I, O’Keefe S, Pick T, Klein M-C, Nguyen D, McKibbin C, Piacenti M, Williams HM, Flitsch SL, Whitehead RC, et al. (2019) Eeyarestatin compounds selectively enhance sec61-mediated ca2+ leakage from the endoplasmic reticulum. Cell Chem Biol 26: 571–583.e6. 10.1016/j.chembiol.2019.01.010 PubMed DOI PMC
Gemmer M, Förster F (2020) A clearer picture of the er translocon complex. J Cell Sci 133: jcs231340. 10.1242/jcs.231340 PubMed DOI
Gogala M, Becker T, Beatrix B, Armache J-P, Barrio-Garcia C, Berninghausen O, Beckmann R (2014) Structures of the sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506: 107–110. 10.1038/nature12950 PubMed DOI
Gomez RA, Sequeira-Lopez MLS (2016) Novel functions of renin precursors in homeostasis and disease. Physiology (Bethesda) 31: 25–33. 10.1152/physiol.00039.2015 PubMed DOI PMC
Görlich D, Rapoport TA (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75: 615–630. 10.1016/0092-8674(93)90483-7 PubMed DOI
Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, Bouton JM, Feuillet F, Makni S, Amar HB, et al. (2005) Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37: 964–968. 10.1038/ng1623 PubMed DOI
Haβdenteufel S, Johnson N, Paton AW, Paton JC, High S, Zimmermann R (2018) Chaperone-mediated sec61 channel gating during er import of small precursor proteins overcomes sec61 inhibitor-reinforced energy barrier. Cell Rep 23: 1373–1386. 10.1016/j.celrep.2018.03.122 PubMed DOI PMC
Haβdenteufel S, Sicking M, Schorr S, Aviram N, Fecher-Trost C, Schuldiner M, Jung M, Zimmermann R, Lang S (2017) Hsnd2 protein represents an alternative targeting factor to the endoplasmic reticulum in human cells. FEBS Lett 591: 3211–3224. 10.1002/1873-3468.12831 PubMed DOI
Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433: 377–381. 10.1038/nature03216 PubMed DOI
Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G (2007) Molecular code for transmembrane-helix recognition by the sec61 translocon. Nature 450: 1026–1030. 10.1038/nature06387 PubMed DOI
Iannitti T, Palmieri B (2011) Clinical and experimental applications of sodium phenylbutyrate. Drugs R D 11: 227–249. 10.2165/11591280-000000000-00000 PubMed DOI PMC
Jackson TR, Patterson SI, Thastrup O, Hanley MR (1988) A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free ca2+ without generation of inositol phosphates in ng115-401l neuronal cells. Biochem J 253: 81–86. 10.1042/bj2530081 PubMed DOI PMC
Junne T, Schwede T, Goder V, Spiess M (2006) The plug domain of yeast sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol Biol Cell 17: 4063–4068. 10.1091/mbc.E06-03-0200 PubMed DOI PMC
Kemter E, Sklenak S, Rathkolb B, Hrabě de Angelis M, Wolf E, Aigner B, Wanke R (2014) No amelioration of uromodulin maturation and trafficking defect by sodium 4-phenylbutyrate in vivo: Studies in mouse models of uromodulin-associated kidney disease. J Biol Chem 289: 10715–10726. 10.1074/jbc.M113.537035 PubMed DOI PMC
Landmann L (2002) Deconvolution improves colocalization analysis of multiple fluorochromes in 3d confocal data sets more than filtering techniques. J Microsc 208: 134–147. 10.1046/j.1365-2818.2002.01068.x PubMed DOI
Lang S, Benedix J, Fedeles SV, Schorr S, Schirra C, Schäuble N, Jalal C, Greiner M, Haβdenteufel S, Tatzelt J, et al. (2012) Different effects of sec61α, sec62 and sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J Cell Sci 125: 1958–1969. 10.1242/jcs.096727 PubMed DOI PMC
Lang S, Erdmann F, Jung M, Wagner R, Cavalié A, Zimmermann R (2011) Sec61 complexes form ubiquitous er ca(2+) leak channels. Channels 5: 228–235. 10.4161/chan.5.3.15314 PubMed DOI
Lang S, Nguyen D, Pfeffer S, Förster F, Helms V, Zimmermann R (2019) Functions and mechanisms of the human ribosome-translocon complex. In Macromolecular Protein Complexes II: Structure and Function. Harris JR, Marles-Wright J (eds.). pp 83–141. Cham: Springer International Publishing. PubMed
Lang S, Pfeffer S, Lee P-H, Cavalié A, Helms V, Förster F, Zimmermann R (2017) An update on sec61 channel functions, mechanisms, and related diseases. Front Physiol 8: 887. 10.3389/fphys.2017.00887 PubMed DOI PMC
Lee S, Choi M (2016) Ultra-rare disease and genomics-driven precision medicine. Genomics Inform 14: 42–45. 10.5808/gi.2016.14.2.42 PubMed DOI PMC
Liu Z, Zhu L, Roberts R, Tong W (2019) Toward clinical implementation of next-generation sequencing-based genetic testing in rare diseases: Where are we? Trends Genet 35: 852–867. 10.1016/j.tig.2019.08.006 PubMed DOI
Magdalena K, Marek B, Marzanna C-P (2015) Phenylbutyric acid: Simple structure - multiple effects. Curr Pharm Des 21: 2147–2166. 10.2174/1381612821666150105160059 PubMed DOI
Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169: 375–382. 10.1111/j.1365-2818.1993.tb03313.x PubMed DOI
Melnyk A, Rieger H, Zimmermann R (2015) Co-chaperones of the mammalian endoplasmic reticulum. In The Networking of Chaperones by Co-Chaperones: Control of Cellular Protein Homeostasis. Blatch GL, Edkins AL (eds.). pp 179–200. Cham: Springer International Publishing. PubMed
Nguyen D, Stutz R, Schorr S, Lang S, Pfeffer S, Freeze HH, Förster F, Helms V, Dudek J, Zimmermann R (2018) Proteomics reveals signal peptide features determining the client specificity in human trap-dependent er protein import. Nat Commun 9: 3765. 10.1038/s41467-018-06188-z PubMed DOI PMC
O’Keefe S, High S (2020) Membrane translocation at the er: With a little help from my friends. FEBS J 287: 4607–4611. 10.1111/febs.15309 PubMed DOI
Olinger E, Hofmann P, Kidd K, Dufour I, Belge H, Schaeffer C, Kipp A, Bonny O, Deltas C, Demoulin N, et al. (2020) Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in umod and muc1. Kidney Int 98: 717–731. 10.1016/j.kint.2020.04.038 PubMed DOI
Park E, Rapoport TA (2012) Mechanisms of sec61/secy-mediated protein translocation across membranes. Annu Rev Biophys 41: 21–40. 10.1146/annurev-biophys-050511-102312 PubMed DOI
Periasamy M, Kalyanasundaram A (2007) Serca pump isoforms: Their role in calcium transport and disease. Muscle Nerve 35: 430–442. 10.1002/mus.20745 PubMed DOI
Pivin E, Ponte B, de Seigneux S, Ackermann D, Guessous I, Ehret G, Pechère-Bertschi A, Olinger E, Mohaupt M, Vogt B, et al. (2018) Uromodulin and nephron mass. Clin J Am Soc Nephrol 13: 1556–1557. 10.2215/cjn.03600318 PubMed DOI PMC
Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the crac channel. Nature 443: 230–233. 10.1038/nature05122 PubMed DOI
Rampoldi L, Scolari F, Amoroso A, Ghiggeri G, Devuyst O (2011) The rediscovery of uromodulin (tamm–horsfall protein): From tubulointerstitial nephropathy to chronic kidney disease. Kidney Int 80: 338–347. 10.1038/ki.2011.134 PubMed DOI
Rapoport TA, Li L, Park E (2017) Structural and mechanistic insights into protein translocation. Annu Rev Cell Dev Biol 33: 369–390. 10.1146/annurev-cellbio-100616-060439 PubMed DOI
Schaeffer C, Izzi C, Vettori A, Pasqualetto E, Cittaro D, Lazarevic D, Caridi G, Gnutti B, Mazza C, Jovine L, et al. (2019) Autosomal dominant tubulointerstitial kidney disease with adult onset due to a novel renin mutation mapping in the mature protein. Scientific Rep 9: 11601. 10.1038/s41598-019-48014-6 PubMed DOI PMC
Schubert D, Klein M-C, Hassdenteufel S, Caballero-Oteyza A, Yang L, Proietti M, Bulashevska A, Kemming J, Kühn J, Winzer S, et al. (2017) Plasma cell deficiency in human subjects with heterozygous mutations in sec61 translocon alpha 1 subunit (sec61a1). J Allergy Clin Immunol 141: 1427–1438. 10.1016/j.jaci.2017.06.042 PubMed DOI PMC
Schweda F, Friis U, Wagner C, Skott O, Kurtz A (2007) Renin release. Physiology 22: 310–319. 10.1152/physiol.00024.2007 PubMed DOI
Shaw PJ, Feske S (2012) Physiological and pathophysiological functions of soce in the immune system. Front Biosci (Elite Ed) 4: 2253–2268. 10.2741/540 PubMed DOI PMC
Steubl D, Block M, Herbst V, Nockher WA, Schlumberger W, Satanovskij R, Angermann S, Hasenau A-L, Stecher L, Heemann U, et al. (2016) Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Medicine (Baltimore) 95: e3011. 10.1097/md.0000000000003011 PubMed DOI PMC
Tanaka Y, Sugano Y, Takemoto M, Mori T, Furukawa A, Kusakizako T, Kumazaki K, Kashima A, Ishitani R, Sugita Y, et al. (2015) Crystal structures of secyeg in lipidic cubic phase elucidate a precise resting and a peptide-bound state. Cell Rep 13: 1561–1568. 10.1016/j.celrep.2015.10.025 PubMed DOI
Thastrup O, Dawson AP, Scharff O, Foder B, Cullen PJ, Drøbak BK, Bjerrum PJ, Christensen SB, Hanley MR (1994) Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Inflamm Res 43: 187–193. 10.1007/bf01986687 PubMed DOI
Van den Berg B, Clemons WM Jr., Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427: 36–44. 10.1038/nature02218 PubMed DOI
Van Nieuwenhove E, Barber JS, Neumann J, Smeets E, Willemsen M, Pasciuto E, Prezzemolo T, Lagou V, Seldeslachts L, Malengier-Devlies B, et al. (2020) Defective sec61α1 underlies a novel cause of autosomal dominant severe congenital neutropenia. J Allergy Clin Immunol 146: 1180–1193. 10.1016/j.jaci.2020.03.034 PubMed DOI PMC
Voorhees RM, Fernández IS, Scheres SHW, Hegde RS (2014) Structure of the mammalian ribosome-sec61 complex to 3.4 å resolution. Cell 157: 1632–1643. 10.1016/j.cell.2014.05.024 PubMed DOI PMC
Voorhees RM, Hegde RS (2016) Structure of the sec61 channel opened by a signal sequence. Science 351: 88–91. 10.1126/science.aad4992 PubMed DOI PMC
Vylet’al P, Kublová M, Kalbáčová M, Hodaňová K, Barešová V, Stibůrková B, Sikora J, Hůlková H, živný J, Majewski J, et al. (2006) Alterations of uromodulin biology: A common denominator of the genetically heterogeneous fjhn/mckd syndrome. Kidney Int 70: 1155–1169. 10.1038/sj.ki.5001728 PubMed DOI
Vyletal P, Bleyer AJ, Kmoch S (2010) Uromodulin biology and pathophysiology–An update. Kidney Blood Press Res 33: 456–475. 10.1159/000321013 PubMed DOI
Williams SE, Reed AAC, Galvanovskis J, Antignac C, Goodship T, Karet FE, Kotanko P, Lhotta K, Morinière V, Williams P, et al. (2009) Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum. Hum Mol Genet 18: 2963–2974. 10.1093/hmg/ddp235 PubMed DOI PMC
Wirth A, Jung M, Bies C, Frien M, Tyedmers J, Zimmermann R, Wagner R (2003) The sec61p complex is a dynamic precursor activated channel. Mol Cell 12: 261–268. 10.1016/s1097-2765(03)00283-1 PubMed DOI
Živná M, Kidd K, Kmoch S, Bleyer AJ (2011) Autosomal dominant tubulointerstitial kidney disease – ren. In GeneReviews, Adam MP, Ardinger HH, Pagon RA (eds), 1993–2022. Seattle, WA: University of Washington, Seattle. PubMed PMC
Zimmer J, Nam Y, Rapoport TA (2008) Structure of a complex of the atpase seca and the protein-translocation channel. Nature 455: 936–943. 10.1038/nature07335 PubMed DOI PMC
Živná M, Hůlková H, Matignon M, Hodaňová K, Vylet’al P, Kalbáčová M, Barešová V, Sikora J, Blažková H, Živný J, et al. (2009) Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet 85: 204–213. 10.1016/j.ajhg.2009.07.010 PubMed DOI PMC
Živná M, Kidd K, Zaidan M, Vyleťal P, Barešová V, Hodaňová K, Sovová J, Hartmannová H, Votruba M, Trešlová H, et al. (2020) An international cohort study of autosomal dominant tubulointerstitial kidney disease due to ren mutations identifies distinct clinical subtypes. Kidney Int 98: 1589–1604. 10.1016/j.kint.2020.06.041 PubMed DOI PMC
PDB
3J7Q, 3JC2