PD-1/PD-L1 inhibitors in haematological malignancies: update 2017
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
28685821
PubMed Central
PMC5629439
DOI
10.1111/imm.12788
Knihovny.cz E-zdroje
- Klíčová slova
- haematological malignancy, myeloma, nivolumab, pembrolizumab, programmed death 1 receptor,
- MeSH
- antigeny CD274 antagonisté a inhibitory imunologie metabolismus MeSH
- antigeny CD279 antagonisté a inhibitory imunologie metabolismus MeSH
- cílená molekulární terapie MeSH
- hematologické nádory farmakoterapie imunologie metabolismus patologie MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- medicína založená na důkazech MeSH
- protinádorové látky škodlivé účinky terapeutické užití MeSH
- signální transdukce účinky léků MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antigeny CD274 MeSH
- antigeny CD279 MeSH
- CD274 protein, human MeSH Prohlížeč
- PDCD1 protein, human MeSH Prohlížeč
- protinádorové látky MeSH
The introduction of PD-1/PD-L1 pathway inhibitors is an important landmark in solid oncology with unprecedented practice-changing activity in various types of solid tumours. Among haematological malignancies, PD-1/PD-L1 inhibitors have been successful, so far, only in the treatment of classical Hodgkin lymphoma, which typically exhibits an over-expression of PD-1 ligands (PD-L1, PD-L2) due to alterations in chromosome 9p24.1. Such positive outcomes led to the US Food and Drug Administration approval of nivolumab use in relapsed Hodgkin lymphoma in 2016 as the first haematological indication. Although the results in other lymphoid malignancies have not been so striking, blockade of the PD-1/PD-L1 axis has led to meaningful responses in other lymphoma types such as diffuse large B-cell lymphoma, follicular lymphoma or several T-cell lymphomas. Monotherapy with PD-1/PD-L1 inhibitors in chronic lymphocytic leukaemia and multiple myeloma has been unsatisfactory, suggesting that a combinational approach with other synergistic drugs is needed. In the case of multiple myeloma, immunomodulatory agents together with corticosteroids represent the most promising combinations. Among myeloid malignancies, the anti-PD-1 monoclonal antibodies are examined dominantly in acute myeloid leukaemia and myelodysplastic syndromes in combination with potentially synergistic hypomethylating drugs such as 5-azacitidine, resulting in promising outcomes that warrant further investigation. We have described all available clinical results of PD-1/PD-L1 inhibitors in haematological malignancies and discussed related toxicities, as well as highlighted crucial preclinical studies in this review.
Centro de Investigacion Medica Aplicada Clinica Universidad de Navarra IDISNA Pamplona Spain
Department of Haemato oncology University Hospital Ostrava Ostrava Czech Republic
Faculty of Medicine University of Ostrava Ostrava Czech Republic
Faculty of Science University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006; 6:836–48. PubMed
Teng MWL, Vesely MD, Duret H, McLaughlin N, Towne JE, Schreiber RD et al Opposing roles for IL‐23 and IL‐12 in maintaining occult cancer in an equilibrium state. Cancer Res 2012; 72:3987–96. PubMed PMC
Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21:137–48. PubMed
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331:1565–70. PubMed
Marshall EA, Ng KW, Kung SHY, Conway EM, Martinez VD, Halvorsen EC et al Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol Cancer 2016; 15:67. PubMed PMC
Chen X, Oppenheim JJ. Th17 cells and Tregs: unlikely allies. J Leukoc Biol 2014; 95:723–31. PubMed PMC
Brayer JB, Pinilla‐Ibarz J. Developing strategies in the immunotherapy of leukemias. Cancer Control 2013; 20:49–59. PubMed PMC
Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T‐cell therapy. Mol Ther Oncolytics 2016; 3:16011. PubMed PMC
Jelinek T, Hajek R. Monoclonal antibodies – a new era in the treatment of multiple myeloma. Blood Rev 2016; 30:101–10. PubMed
Eastwood D, Findlay L, Poole S, Bird C, Wadhwa M, Moore M et al Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T‐cells. Br J Pharmacol 2010; 161:512–26. PubMed PMC
Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer–preclinical background: CTLA‐4 and PD‐1 blockade. Semin Oncol 2010; 37:430–9. PubMed
Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E et al Nivolumab versus docetaxel in advanced squamous‐cell non‐small‐cell lung cancer. N Engl J Med 2015; 373:123–35. PubMed PMC
Larkin J, Chiarion‐Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD et al Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373:23–34. PubMed PMC
Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S et al Nivolumab versus everolimus in advanced renal‐cell carcinoma. N Engl J Med 2015; 373:1803–13. PubMed PMC
Jelinek T, Hajek R. PD‐1/PD‐L1 inhibitors in multiple myeloma: the present and the future. OncoImmunology 2016; 5:e1254856. PubMed PMC
Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992; 11:3887–95. PubMed PMC
Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al Engagement of the PD‐1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192:1027–34. PubMed PMC
Rodig N, Ryan T, Allen JA, Pang H, Grabie N, Chernova T et al Endothelial expression of PD‐L1 and PD‐L2 down‐regulates CD8+ T cell activation and cytolysis. Eur J Immunol 2003; 33:3117–26. PubMed
Keir ME, Latchman YE, Freeman GJ, Sharpe AH. Programmed death‐1 (PD‐1):PD‐ligand 1 interactions inhibit TCR‐mediated positive selection of thymocytes. J Immunol 2005; 175:7372–9. PubMed PMC
Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ et al Regulation of PD‐1, PD‐L1, and PD‐L2 expression during normal and autoimmune responses. Eur J Immunol 2003; 33:2706–16. PubMed
Isogawa M, Furuichi Y, Chisari FV. Oscillating CD8+ T cell effector functions after antigen recognition in the liver. Immunity 2005; 23:53–63. PubMed
Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T et al Characterization of hepatitis B virus (HBV)‐specific T‐cell dysfunction in chronic HBV infection. J Virol 2007; 81:4215–25. PubMed PMC
Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S et al PD‐1 expression on HIV‐specific T cells is associated with T‐cell exhaustion and disease progression. Nature 2006; 443:350–4. PubMed
Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN et al PD‐1 expression by tumour‐associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017; 545:495–9. PubMed PMC
Schwering I, Bräuninger A, Distler V, Jesdinsky J, Diehl V, Hansmann M‐L et al Profiling of Hodgkin's lymphoma cell line L1236 and germinal center B cells: identification of Hodgkin's lymphoma‐specific genes. Mol Med 2003; 9:85–95. PubMed PMC
Diehl V, Sextro M, Franklin J, Hansmann M‐L, Harris N, Jaffe E et al Clinical presentation, course, and prognostic factors in lymphocyte‐predominant Hodgkin's disease and lymphocyte‐rich classical Hodgkin's disease: report from the European Task Force on lymphoma project on lymphocyte‐predominant Hodgkin's disease. J Clin Oncol 1999; 17:776. PubMed
Menter T, Bodmer‐Haecki A, Dirnhofer S, Tzankov A. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B‐cell lymphomas. Hum Pathol 2016; 54:17–24. PubMed
Roemer MGM, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H et al PD‐L1 and PD‐L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol 2016; 34:2690–7. PubMed PMC
Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S et al Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem‐cell transplantation and brentuximab vedotin: a multicentre, multicohort, single‐arm phase 2 trial. Lancet Oncol 2016; 17:1283–94. PubMed PMC
Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E et al Integrative analysis reveals selective 9p24.1 amplification, increased PD‐1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B‐cell lymphoma. Blood 2010; 116:3268–77. PubMed PMC
Muenst S, Hoeller S, Dirnhofer S, Tzankov A. Increased programmed death‐1+ tumor‐infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol 2009; 40:1715–22. PubMed
Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M et al PD‐1‐PD‐1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 2008; 111:3220–4. PubMed
Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al PD‐1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 2015; 372:311–9. PubMed PMC
Timmerman JM, Engert A, Younes A, Santoro A, Armand P, Fanale MA et al Checkmate 205 update with minimum 12‐month follow up: a phase 2 study of nivolumab in patients with relapsed/refractory classical Hodgkin lymphoma. Blood 2016; 128:1110.
Herbaux C, Gauthier J, Brice P, Fornecker L, Bouabdallah K, Manson G et al Nivolumab is effective and reasonably safe in relapsed or refractory Hodgkin's lymphoma after allogeneic hematopoietic cell transplantation: a study from the lysa and SFGM‐TC. Blood 2015; 126:3979.
Mori S, Ahmed W, Patel RD, Dohrer AL. Steroid refractory acute liver GVHD in a Hodgkin's patient after allogeneic stem transplant cell transplantation following treatment with anti PD‐1 antibody, nivolumab, for relapsed disease. Biol Blood Marrow Transplant 2016; 22:S392–3.
Herrera AF, Bartlett NL, Ramchandren R, Vose JM, Moskowitz AJ, Feldman TA et al Preliminary results from a phase 1/2 study of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 2016; 128:1105. PubMed
Diefenbach CS, Hong F, David KA, Cohen J, Robertson M, Advani R et al A phase I study with an expansion cohort of the combination of ipilimumab and nivolumab and brentuximab vedotin in patients with relapsed/refractory Hodgkin lymphoma: a trial of the ECOG‐ACRIN cancer research group (E4412 Arms D and E). Blood 2016; 128:1106.
Ansell S, Gutierrez ME, Shipp MA, Gladstone D, Moskowitz A, Borello I et al A phase 1 study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood 2016; 128:183.
Armand P, Shipp MA, Ribrag V, Michot J‐M, Zinzani PL, Kuruvilla J et al Programmed death‐1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol 2016; 34:3733–9. PubMed PMC
Moskowitz CH, Zinzani PL, Fanale MA, Armand P, Johnson NA, Radford JA et al Pembrolizumab in relapsed/refractory classical Hodgkin lymphoma: primary end point analysis of the phase 2 keynote‐087 study. Blood 2016; 128:1107.
Falchi L, Sawas A, Deng C, Amengual JE, Lichtenstein E, Khan K et al PD‐1 blockade after epigenetic therapy in patients with relapsed or refractory Hodgkin lymphoma: higher‐than‐expected rate of complete responses. Blood 2016; 128:2999. PubMed PMC
Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 2011; 117:5019–32. PubMed PMC
Kiyasu J, Miyoshi H, Hirata A, Arakawa F, Ichikawa A, Niino D et al Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B‐cell lymphoma. Blood 2015; 126:2193–201. PubMed PMC
Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M et al Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol 2016; 34:2698–704. PubMed PMC
Zinzani PL, Ribrag V, Moskowitz CH, Michot J‐M, Kuruvilla J, Balakumaran A et al Phase 1b study of pembrolizumab in patients with relapsed/refractory primary mediastinal large B‐cell lymphoma: results from the ongoing keynote‐013 trial. Blood 2016; 128:619. PubMed
Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen Y‐B et al Disabling immune tolerance by programmed death‐1 blockade with pidilizumab after autologous hematopoietic stem‐cell transplantation for diffuse large B‐cell lymphoma: results of an international phase II trial. J Clin Oncol 2013; 31:4199–206. PubMed PMC
Armand P, Welch S, Kim HT, LaCasce AS, Jacobsen ED, Davids MS et al Prognostic factors for patients with diffuse large B cell lymphoma and transformed indolent lymphoma undergoing autologous stem cell transplantation in the positron emission tomography era. Br J Haematol 2013; 160:608–17. PubMed
Kridel R, Mottok A, Farinha P, Ben‐Neriah S, Ennishi D, Zheng Y et al Cell of origin of transformed follicular lymphoma. Blood 2015; 126:2118–27. PubMed PMC
Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. Programmed death ligand 1 is expressed by non‐Hodgkin lymphomas and inhibits the activity of tumor‐associated T cells. Clin Cancer Res 2011; 17:4232–44. PubMed
Brown JA, Dorfman DM, Ma F‐R, Sullivan EL, Munoz O, Wood CR et al Blockade of programmed death‐1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 2003; 170:1257–66. PubMed
Myklebust JH, Irish JM, Brody J, Czerwinski DK, Houot R, Kohrt HE et al High PD‐1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood 2013; 121:1367–76. PubMed PMC
Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N et al Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open‐label, phase 2 trial. Lancet Oncol 2014; 15:69–77. PubMed PMC
Han L, Liu F, Li R, Li Z, Chen X, Zhou Z et al Role of programmed death ligands in effective T‐cell interactions in extranodal natural killer/T‐cell lymphoma. Oncol Lett 2014; 8:1461–9. PubMed PMC
Miyoshi H, Kiyasu J, Kato T, Yoshida N, Shimono J, Yokoyama S et al PD‐L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T‐cell leukemia/lymphoma. Blood 2016; 128:1374–81. PubMed
Gaulard P, de Leval L. Follicular helper T cells: implications in neoplastic hematopathology. Semin Diagn Pathol 2011; 28:202–13. PubMed PMC
de Leval L, Rickman DS, Thielen C, de Reynies A, Huang Y‐L, Delsol G et al The gene expression profile of nodal peripheral T‐cell lymphoma demonstrates a molecular link between angioimmunoblastic T‐cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 2007; 109:4952–63. PubMed
Roncador G, García Verdes‐Montenegro J‐F, Tedoldi S, Paterson JC, Klapper W, Ballabio E et al Expression of two markers of germinal center T cells (SAP and PD‐1) in angioimmunoblastic T‐cell lymphoma. Haematologica 2007; 92:1059–66. PubMed
Çetinözman F, Jansen PM, Vermeer MH, Willemze R. Differential expression of programmed death‐1 (pd‐1) in Sézary syndrome and mycosis fungoides. Arch Dermatol 2012; 148:1379–85. PubMed
Kantekure K, Yang Y, Raghunath P, Schaffer A, Woetmann A, Zhang Q et al Expression patterns of the immunosuppressive proteins PD‐1/CD279 and PD‐L1/CD274 at different stages of cutaneous T‐cell lymphoma/mycosis fungoides. Am J Dermatopathol 2012; 34:126–8. PubMed PMC
Samimi S, Benoit B, Evans K, Wherry EJ, Showe L, Wysocka M et al Increased programmed death‐1 expression on CD4+ T cells in cutaneous T‐cell lymphoma: implications for immune suppression. Arch Dermatol 2010; 146:1382–8. PubMed PMC
Khodadoust M, Rook AH, Porcu P, Foss FM, Moskowitz AJ, Shustov AR et al Pembrolizumab for treatment of relapsed/refractory mycosis fungoides and Sezary syndrome: clinical efficacy in a Citn multicenter phase 2 study. Blood 2016; 128:181.
Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011; 364:1046–60. PubMed
Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos M‐V et al International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014; 15:e538–48. PubMed
Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D et al Plasma cells from multiple myeloma patients express B7‐H1 (PD‐L1) and increase expression after stimulation with IFN‐{gamma} and TLR ligands via a MyD88‐, TRAF6‐, and MEK‐dependent pathway. Blood 2007; 110:296–304. PubMed
Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A et al Marrow stromal cells induce B7‐H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 2013; 27:464–72. PubMed
Ray A, Das DS, Song Y, Richardson P, Munshi NC, Chauhan D et al Targeting PD1‐PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia 2015; 29:1441–4. PubMed PMC
Görgün G, Samur MK, Cowens KB, Paula S, Bianchi G, Anderson JE et al Lenalidomide enhances immune checkpoint blockade‐induced immune response in multiple myeloma. Clin Cancer Res 2015; 21:4607–18. PubMed PMC
Hallett WHD, Jing W, Drobyski WR, Johnson BD. Immunosuppressive effects of multiple myeloma are overcome by PD‐L1 blockade. Biol Blood Marrow Transplant 2011; 17:1133–45. PubMed
Kearl TJ, Jing W, Gershan JA, Johnson BD. Programmed death receptor‐1/programmed death receptor ligand‐1 blockade after transient lymphodepletion to treat myeloma. J Immunol 2013; 190:5620–8. PubMed PMC
Paiva B, Azpilikueta A, Puig N, Ocio EM, Sharma R, Oyajobi BO et al PD‐L1/PD‐1 presence in the tumor microenvironment and activity of PD‐1 blockade in multiple myeloma. Leukemia 2015; 29:2110–3. PubMed
Mateos M‐V, Orlowski RZ, Siegel DSD, Reece DE, Moreau P, Ocio EM et al (2016) Pembrolizumab in combination with lenalidomide and low‐dose dexamethasone for relapsed/refractory multiple myeloma (RRMM): Final efficacy and safety analysis. In: Journal of Clinical Oncology [Internet]. Chicago; 2016. p. J Clin Oncol 34, (suppl; abstr 8010). (english; vol. 34). URL http://meetinglibrary.asco.org/content/167184-176 [accessed on 7 January 2017]
Wilson L, Cohen AD, Weiss BM, Vogl DT, Garfall AL, Capozzi DL et al Pembrolizumab in combination with pomalidomide and dexamethasone (PEMBRO/POM/DEX) for pomalidomide exposed relapsed or refractory multiple myeloma. Blood 2016; 128:2119.
Efebera YA, Rosko AE, Hofmeister C, Benner J, Bakan C, Stamper K et al First interim results of a phase I/II study of lenalidomide in combination with anti‐PD‐1 monoclonal antibody MDV9300 (CT‐011) in patients with relapsed/refractory multiple myeloma. Blood 2015; 126:1838.
Rosenblatt J, Avivi I, Binyamini N, Uhl L, Somaiya P, Stroopinsky D et al Blockade of PD‐1 in combination with dendritic cell/myeloma fusion cell vaccination following autologous stem cell transplantation is well tolerated, induces anti‐tumor immunity and may lead to eradication of measureable disease. Blood 2015; 126:4218.
Brusa D, Serra S, Coscia M, Rossi D, D'Arena G, Laurenti L et al The PD‐1/PD‐L1 axis contributes to T‐cell dysfunction in chronic lymphocytic leukemia. Haematologica 2013; 98:953–63. PubMed PMC
Soma LA, Craig FE, Swerdlow SH. The proliferation center microenvironment and prognostic markers in chronic lymphocytic leukemia/small lymphocytic lymphoma. Hum Pathol 2006; 37:152–9. PubMed
Nunes C, Wong R, Mason M, Fegan C, Man S, Pepper C. Expansion of a CD8+PD‐1+ replicative senescence phenotype in early stage CLL patients is associated with inverted CD4:CD8 ratios and disease progression. Clin Cancer Res 2012; 18:678–87. PubMed
Ramsay AG, Johnson AJ, Lee AM, Gorgün G, Le Dieu R, Blum W et al Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 2008; 118:2427–37. PubMed PMC
McClanahan F, Hanna B, Miller S, Clear AJ, Lichter P, Gribben JG et al PD‐L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood 2015; 126:203–11. PubMed PMC
Jain N, Basu S, Thompson PA, Ohanian M, Ferrajoli A, Pemmaraju N et al Nivolumab combined with ibrutinib for CLL and Richter transformation: a phase II trial. Blood 2016; 128:59.
Ding W, Le‐Rademacher J, Call TG, Parikh SA, Leis JF, Shanafelt TD et al PD‐1 blockade with pembrolizumab in relapsed CLL including Richter's transformation: an updated report from a phase 2 trial (MC1485). Blood 2016; 128:4392.
Berger R, Rotem‐Yehudar R, Slama G, Landes S, Kneller A, Leiba M et al Phase I safety and pharmacokinetic study of CT‐011, a humanized antibody interacting with PD‐1, in patients with advanced hematologic malignancies. Clin Cancer Res 2008; 14:3044–51. PubMed
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND et al Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374:2209–21. PubMed PMC
Tamura H, Dan K, Tamada K, Nakamura K, Shioi Y, Hyodo H et al Expression of functional B7‐H2 and B7.2 costimulatory molecules and their prognostic implications in de novo acute myeloid leukemia. Clin Cancer Res 2005; 11:5708–17. PubMed
Berthon C, Driss V, Liu J, Kuranda K, Leleu X, Jouy N et al In acute myeloid leukemia, B7‐H1 (PD‐L1) protection of blasts from cytotoxic T cells is induced by TLR ligands and interferon‐γ and can be reversed using MEK inhibitors. Cancer Immunol Immunother 2010; 59:1839–49. PubMed PMC
Krönig H, Kremmler L, Haller B, Englert C, Peschel C, Andreesen R et al Interferon‐induced programmed death‐ligand 1 (PD‐L1/B7‐H1) expression increases on human acute myeloid leukemia blast cells during treatment. Eur J Haematol 2014; 92:195–203. PubMed
Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Köhnke T et al Blockade of the PD‐1/PD‐L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T‐cell‐induced immune escape mechanism. Leukemia 2016; 30:484–91. PubMed
Chen X, Liu S, Wang L, Zhang W, Ji Y, Ma X. Clinical significance of B7‐H1 (PD‐L1) expression in human acute leukemia. Cancer Biol Ther 2008; 7:622–7. PubMed
Norde WJ, Maas F, Hobo W, Korman A, Quigley M, Kester MGD et al PD‐1/PD‐L1 interactions contribute to functional T‐cell impairment in patients who relapse with cancer after allogeneic stem cell transplantation. Cancer Res 2011; 71:5111–22. PubMed
Zhang L, Gajewski TF, Kline J. PD‐1/PD‐L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 2009; 114: 1545–52. PubMed PMC
Ørskov AD, Treppendahl MB, Skovbo A, Holm MS, Friis LS, Hokland M et al Hypomethylation and up‐regulation of PD‐1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD‐1 and DNA methylation. Oncotarget 2015; 6:9612–26. PubMed PMC
Daver N, Basu S, Garcia‐Manero G, Cortes JE, Ravandi F, Jabbour EJ et al Phase IB/II study of nivolumab in combination with azacytidine (AZA) in patients (pts) with relapsed acute myeloid leukemia (AML). Blood 2016; 128:763. PubMed
Kondo A, Yamashita T, Tamura H, Zhao W, Tsuji T, Shimizu M et al Interferon‐γ and tumor necrosis factor‐α induce an immunoinhibitory molecule, B7‐H1, via nuclear factor‐κB activation in blasts in myelodysplastic syndromes. Blood 2010; 116:1124–31. PubMed PMC
Yang H, Bueso‐Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng Q‐R et al Expression of PD‐L1, PD‐L2, PD‐1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 2014; 28:1280–8. PubMed PMC
Rivera GA, Saramipoor Behbahan I, Greenberg PL. Immune checkpoint pathways: perspectives on myeloid malignancies. Leuk Lymphoma 2016; 57:995–1001. PubMed
Garcia‐Manero G, Daver NG, Montalban‐Bravo G, Jabbour EJ, DiNardo CD, Kornblau SM et al A phase II study evaluating the combination of nivolumab (Nivo) or ipilimumab (Ipi) with azacitidine in Pts with previously treated or untreated myelodysplastic syndromes (MDS). Blood 2016; 128:344.
Garcia‐Manero G, Tallman MS, Martinelli G, Ribrag V, Yang H, Balakumaran A et al Pembrolizumab, a PD‐1 inhibitor, in patients with myelodysplastic syndrome (MDS) after failure of hypomethylating agent treatment. Blood 2016; 128:345.
Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y et al Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med 2016; 375:1749–55. PubMed PMC
Spisek R, Dhodapkar MV. Towards a better way to die with chemotherapy: role of heat shock protein exposure on dying tumor cells. Cell Cycle 2007; 6:1962–5. PubMed
Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E et al Combination therapy with anti‐PD‐1, Anti‐TIM‐3, and focal radiation results in regression of murine gliomas. Clin Cancer Res 2017; 23:124–36. PubMed PMC
Badros AZ, Hyjek E, Ma N, Lesokhin AM, Rapoport AP, Kocoglu MH et al Pembrolizumab in Combination with Pomalidomide and Dexamethasone for Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2016; 128:490. PubMed
Promising Immunotherapeutic Modalities for B-Cell Lymphoproliferative Disorders
Toxicity of Immune-Checkpoint Inhibitors in Hematological Malignancies