PD-1/PD-L1 inhibitors in haematological malignancies: update 2017

. 2017 Nov ; 152 (3) : 357-371. [epub] 20170804

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28685821

The introduction of PD-1/PD-L1 pathway inhibitors is an important landmark in solid oncology with unprecedented practice-changing activity in various types of solid tumours. Among haematological malignancies, PD-1/PD-L1 inhibitors have been successful, so far, only in the treatment of classical Hodgkin lymphoma, which typically exhibits an over-expression of PD-1 ligands (PD-L1, PD-L2) due to alterations in chromosome 9p24.1. Such positive outcomes led to the US Food and Drug Administration approval of nivolumab use in relapsed Hodgkin lymphoma in 2016 as the first haematological indication. Although the results in other lymphoid malignancies have not been so striking, blockade of the PD-1/PD-L1 axis has led to meaningful responses in other lymphoma types such as diffuse large B-cell lymphoma, follicular lymphoma or several T-cell lymphomas. Monotherapy with PD-1/PD-L1 inhibitors in chronic lymphocytic leukaemia and multiple myeloma has been unsatisfactory, suggesting that a combinational approach with other synergistic drugs is needed. In the case of multiple myeloma, immunomodulatory agents together with corticosteroids represent the most promising combinations. Among myeloid malignancies, the anti-PD-1 monoclonal antibodies are examined dominantly in acute myeloid leukaemia and myelodysplastic syndromes in combination with potentially synergistic hypomethylating drugs such as 5-azacitidine, resulting in promising outcomes that warrant further investigation. We have described all available clinical results of PD-1/PD-L1 inhibitors in haematological malignancies and discussed related toxicities, as well as highlighted crucial preclinical studies in this review.

Zobrazit více v PubMed

Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006; 6:836–48. PubMed

Teng MWL, Vesely MD, Duret H, McLaughlin N, Towne JE, Schreiber RD et al Opposing roles for IL‐23 and IL‐12 in maintaining occult cancer in an equilibrium state. Cancer Res 2012; 72:3987–96. PubMed PMC

Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21:137–48. PubMed

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331:1565–70. PubMed

Marshall EA, Ng KW, Kung SHY, Conway EM, Martinez VD, Halvorsen EC et al Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol Cancer 2016; 15:67. PubMed PMC

Chen X, Oppenheim JJ. Th17 cells and Tregs: unlikely allies. J Leukoc Biol 2014; 95:723–31. PubMed PMC

Brayer JB, Pinilla‐Ibarz J. Developing strategies in the immunotherapy of leukemias. Cancer Control 2013; 20:49–59. PubMed PMC

Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T‐cell therapy. Mol Ther Oncolytics 2016; 3:16011. PubMed PMC

Jelinek T, Hajek R. Monoclonal antibodies – a new era in the treatment of multiple myeloma. Blood Rev 2016; 30:101–10. PubMed

Eastwood D, Findlay L, Poole S, Bird C, Wadhwa M, Moore M et al Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T‐cells. Br J Pharmacol 2010; 161:512–26. PubMed PMC

Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer–preclinical background: CTLA‐4 and PD‐1 blockade. Semin Oncol 2010; 37:430–9. PubMed

Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E et al Nivolumab versus docetaxel in advanced squamous‐cell non‐small‐cell lung cancer. N Engl J Med 2015; 373:123–35. PubMed PMC

Larkin J, Chiarion‐Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD et al Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373:23–34. PubMed PMC

Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S et al Nivolumab versus everolimus in advanced renal‐cell carcinoma. N Engl J Med 2015; 373:1803–13. PubMed PMC

Jelinek T, Hajek R. PD‐1/PD‐L1 inhibitors in multiple myeloma: the present and the future. OncoImmunology 2016; 5:e1254856. PubMed PMC

Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992; 11:3887–95. PubMed PMC

Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al Engagement of the PD‐1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192:1027–34. PubMed PMC

Rodig N, Ryan T, Allen JA, Pang H, Grabie N, Chernova T et al Endothelial expression of PD‐L1 and PD‐L2 down‐regulates CD8+ T cell activation and cytolysis. Eur J Immunol 2003; 33:3117–26. PubMed

Keir ME, Latchman YE, Freeman GJ, Sharpe AH. Programmed death‐1 (PD‐1):PD‐ligand 1 interactions inhibit TCR‐mediated positive selection of thymocytes. J Immunol 2005; 175:7372–9. PubMed PMC

Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ et al Regulation of PD‐1, PD‐L1, and PD‐L2 expression during normal and autoimmune responses. Eur J Immunol 2003; 33:2706–16. PubMed

Isogawa M, Furuichi Y, Chisari FV. Oscillating CD8+ T cell effector functions after antigen recognition in the liver. Immunity 2005; 23:53–63. PubMed

Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T et al Characterization of hepatitis B virus (HBV)‐specific T‐cell dysfunction in chronic HBV infection. J Virol 2007; 81:4215–25. PubMed PMC

Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S et al PD‐1 expression on HIV‐specific T cells is associated with T‐cell exhaustion and disease progression. Nature 2006; 443:350–4. PubMed

Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN et al PD‐1 expression by tumour‐associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017; 545:495–9. PubMed PMC

Schwering I, Bräuninger A, Distler V, Jesdinsky J, Diehl V, Hansmann M‐L et al Profiling of Hodgkin's lymphoma cell line L1236 and germinal center B cells: identification of Hodgkin's lymphoma‐specific genes. Mol Med 2003; 9:85–95. PubMed PMC

Diehl V, Sextro M, Franklin J, Hansmann M‐L, Harris N, Jaffe E et al Clinical presentation, course, and prognostic factors in lymphocyte‐predominant Hodgkin's disease and lymphocyte‐rich classical Hodgkin's disease: report from the European Task Force on lymphoma project on lymphocyte‐predominant Hodgkin's disease. J Clin Oncol 1999; 17:776. PubMed

Menter T, Bodmer‐Haecki A, Dirnhofer S, Tzankov A. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B‐cell lymphomas. Hum Pathol 2016; 54:17–24. PubMed

Roemer MGM, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H et al PD‐L1 and PD‐L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol 2016; 34:2690–7. PubMed PMC

Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S et al Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem‐cell transplantation and brentuximab vedotin: a multicentre, multicohort, single‐arm phase 2 trial. Lancet Oncol 2016; 17:1283–94. PubMed PMC

Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E et al Integrative analysis reveals selective 9p24.1 amplification, increased PD‐1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B‐cell lymphoma. Blood 2010; 116:3268–77. PubMed PMC

Muenst S, Hoeller S, Dirnhofer S, Tzankov A. Increased programmed death‐1+ tumor‐infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol 2009; 40:1715–22. PubMed

Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M et al PD‐1‐PD‐1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 2008; 111:3220–4. PubMed

Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al PD‐1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 2015; 372:311–9. PubMed PMC

Timmerman JM, Engert A, Younes A, Santoro A, Armand P, Fanale MA et al Checkmate 205 update with minimum 12‐month follow up: a phase 2 study of nivolumab in patients with relapsed/refractory classical Hodgkin lymphoma. Blood 2016; 128:1110.

Herbaux C, Gauthier J, Brice P, Fornecker L, Bouabdallah K, Manson G et al Nivolumab is effective and reasonably safe in relapsed or refractory Hodgkin's lymphoma after allogeneic hematopoietic cell transplantation: a study from the lysa and SFGM‐TC. Blood 2015; 126:3979.

Mori S, Ahmed W, Patel RD, Dohrer AL. Steroid refractory acute liver GVHD in a Hodgkin's patient after allogeneic stem transplant cell transplantation following treatment with anti PD‐1 antibody, nivolumab, for relapsed disease. Biol Blood Marrow Transplant 2016; 22:S392–3.

Herrera AF, Bartlett NL, Ramchandren R, Vose JM, Moskowitz AJ, Feldman TA et al Preliminary results from a phase 1/2 study of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 2016; 128:1105. PubMed

Diefenbach CS, Hong F, David KA, Cohen J, Robertson M, Advani R et al A phase I study with an expansion cohort of the combination of ipilimumab and nivolumab and brentuximab vedotin in patients with relapsed/refractory Hodgkin lymphoma: a trial of the ECOG‐ACRIN cancer research group (E4412 Arms D and E). Blood 2016; 128:1106.

Ansell S, Gutierrez ME, Shipp MA, Gladstone D, Moskowitz A, Borello I et al A phase 1 study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood 2016; 128:183.

Armand P, Shipp MA, Ribrag V, Michot J‐M, Zinzani PL, Kuruvilla J et al Programmed death‐1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol 2016; 34:3733–9. PubMed PMC

Moskowitz CH, Zinzani PL, Fanale MA, Armand P, Johnson NA, Radford JA et al Pembrolizumab in relapsed/refractory classical Hodgkin lymphoma: primary end point analysis of the phase 2 keynote‐087 study. Blood 2016; 128:1107.

Falchi L, Sawas A, Deng C, Amengual JE, Lichtenstein E, Khan K et al PD‐1 blockade after epigenetic therapy in patients with relapsed or refractory Hodgkin lymphoma: higher‐than‐expected rate of complete responses. Blood 2016; 128:2999. PubMed PMC

Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 2011; 117:5019–32. PubMed PMC

Kiyasu J, Miyoshi H, Hirata A, Arakawa F, Ichikawa A, Niino D et al Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B‐cell lymphoma. Blood 2015; 126:2193–201. PubMed PMC

Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M et al Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol 2016; 34:2698–704. PubMed PMC

Zinzani PL, Ribrag V, Moskowitz CH, Michot J‐M, Kuruvilla J, Balakumaran A et al Phase 1b study of pembrolizumab in patients with relapsed/refractory primary mediastinal large B‐cell lymphoma: results from the ongoing keynote‐013 trial. Blood 2016; 128:619. PubMed

Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen Y‐B et al Disabling immune tolerance by programmed death‐1 blockade with pidilizumab after autologous hematopoietic stem‐cell transplantation for diffuse large B‐cell lymphoma: results of an international phase II trial. J Clin Oncol 2013; 31:4199–206. PubMed PMC

Armand P, Welch S, Kim HT, LaCasce AS, Jacobsen ED, Davids MS et al Prognostic factors for patients with diffuse large B cell lymphoma and transformed indolent lymphoma undergoing autologous stem cell transplantation in the positron emission tomography era. Br J Haematol 2013; 160:608–17. PubMed

Kridel R, Mottok A, Farinha P, Ben‐Neriah S, Ennishi D, Zheng Y et al Cell of origin of transformed follicular lymphoma. Blood 2015; 126:2118–27. PubMed PMC

Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. Programmed death ligand 1 is expressed by non‐Hodgkin lymphomas and inhibits the activity of tumor‐associated T cells. Clin Cancer Res 2011; 17:4232–44. PubMed

Brown JA, Dorfman DM, Ma F‐R, Sullivan EL, Munoz O, Wood CR et al Blockade of programmed death‐1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 2003; 170:1257–66. PubMed

Myklebust JH, Irish JM, Brody J, Czerwinski DK, Houot R, Kohrt HE et al High PD‐1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood 2013; 121:1367–76. PubMed PMC

Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N et al Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open‐label, phase 2 trial. Lancet Oncol 2014; 15:69–77. PubMed PMC

Han L, Liu F, Li R, Li Z, Chen X, Zhou Z et al Role of programmed death ligands in effective T‐cell interactions in extranodal natural killer/T‐cell lymphoma. Oncol Lett 2014; 8:1461–9. PubMed PMC

Miyoshi H, Kiyasu J, Kato T, Yoshida N, Shimono J, Yokoyama S et al PD‐L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T‐cell leukemia/lymphoma. Blood 2016; 128:1374–81. PubMed

Gaulard P, de Leval L. Follicular helper T cells: implications in neoplastic hematopathology. Semin Diagn Pathol 2011; 28:202–13. PubMed PMC

de Leval L, Rickman DS, Thielen C, de Reynies A, Huang Y‐L, Delsol G et al The gene expression profile of nodal peripheral T‐cell lymphoma demonstrates a molecular link between angioimmunoblastic T‐cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 2007; 109:4952–63. PubMed

Roncador G, García Verdes‐Montenegro J‐F, Tedoldi S, Paterson JC, Klapper W, Ballabio E et al Expression of two markers of germinal center T cells (SAP and PD‐1) in angioimmunoblastic T‐cell lymphoma. Haematologica 2007; 92:1059–66. PubMed

Çetinözman F, Jansen PM, Vermeer MH, Willemze R. Differential expression of programmed death‐1 (pd‐1) in Sézary syndrome and mycosis fungoides. Arch Dermatol 2012; 148:1379–85. PubMed

Kantekure K, Yang Y, Raghunath P, Schaffer A, Woetmann A, Zhang Q et al Expression patterns of the immunosuppressive proteins PD‐1/CD279 and PD‐L1/CD274 at different stages of cutaneous T‐cell lymphoma/mycosis fungoides. Am J Dermatopathol 2012; 34:126–8. PubMed PMC

Samimi S, Benoit B, Evans K, Wherry EJ, Showe L, Wysocka M et al Increased programmed death‐1 expression on CD4+ T cells in cutaneous T‐cell lymphoma: implications for immune suppression. Arch Dermatol 2010; 146:1382–8. PubMed PMC

Khodadoust M, Rook AH, Porcu P, Foss FM, Moskowitz AJ, Shustov AR et al Pembrolizumab for treatment of relapsed/refractory mycosis fungoides and Sezary syndrome: clinical efficacy in a Citn multicenter phase 2 study. Blood 2016; 128:181.

Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011; 364:1046–60. PubMed

Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos M‐V et al International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014; 15:e538–48. PubMed

Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D et al Plasma cells from multiple myeloma patients express B7‐H1 (PD‐L1) and increase expression after stimulation with IFN‐{gamma} and TLR ligands via a MyD88‐, TRAF6‐, and MEK‐dependent pathway. Blood 2007; 110:296–304. PubMed

Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A et al Marrow stromal cells induce B7‐H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 2013; 27:464–72. PubMed

Ray A, Das DS, Song Y, Richardson P, Munshi NC, Chauhan D et al Targeting PD1‐PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia 2015; 29:1441–4. PubMed PMC

Görgün G, Samur MK, Cowens KB, Paula S, Bianchi G, Anderson JE et al Lenalidomide enhances immune checkpoint blockade‐induced immune response in multiple myeloma. Clin Cancer Res 2015; 21:4607–18. PubMed PMC

Hallett WHD, Jing W, Drobyski WR, Johnson BD. Immunosuppressive effects of multiple myeloma are overcome by PD‐L1 blockade. Biol Blood Marrow Transplant 2011; 17:1133–45. PubMed

Kearl TJ, Jing W, Gershan JA, Johnson BD. Programmed death receptor‐1/programmed death receptor ligand‐1 blockade after transient lymphodepletion to treat myeloma. J Immunol 2013; 190:5620–8. PubMed PMC

Paiva B, Azpilikueta A, Puig N, Ocio EM, Sharma R, Oyajobi BO et al PD‐L1/PD‐1 presence in the tumor microenvironment and activity of PD‐1 blockade in multiple myeloma. Leukemia 2015; 29:2110–3. PubMed

Mateos M‐V, Orlowski RZ, Siegel DSD, Reece DE, Moreau P, Ocio EM et al (2016) Pembrolizumab in combination with lenalidomide and low‐dose dexamethasone for relapsed/refractory multiple myeloma (RRMM): Final efficacy and safety analysis. In: Journal of Clinical Oncology [Internet]. Chicago; 2016. p. J Clin Oncol 34, (suppl; abstr 8010). (english; vol. 34). URL http://meetinglibrary.asco.org/content/167184-176 [accessed on 7 January 2017]

Wilson L, Cohen AD, Weiss BM, Vogl DT, Garfall AL, Capozzi DL et al Pembrolizumab in combination with pomalidomide and dexamethasone (PEMBRO/POM/DEX) for pomalidomide exposed relapsed or refractory multiple myeloma. Blood 2016; 128:2119.

Efebera YA, Rosko AE, Hofmeister C, Benner J, Bakan C, Stamper K et al First interim results of a phase I/II study of lenalidomide in combination with anti‐PD‐1 monoclonal antibody MDV9300 (CT‐011) in patients with relapsed/refractory multiple myeloma. Blood 2015; 126:1838.

Rosenblatt J, Avivi I, Binyamini N, Uhl L, Somaiya P, Stroopinsky D et al Blockade of PD‐1 in combination with dendritic cell/myeloma fusion cell vaccination following autologous stem cell transplantation is well tolerated, induces anti‐tumor immunity and may lead to eradication of measureable disease. Blood 2015; 126:4218.

Brusa D, Serra S, Coscia M, Rossi D, D'Arena G, Laurenti L et al The PD‐1/PD‐L1 axis contributes to T‐cell dysfunction in chronic lymphocytic leukemia. Haematologica 2013; 98:953–63. PubMed PMC

Soma LA, Craig FE, Swerdlow SH. The proliferation center microenvironment and prognostic markers in chronic lymphocytic leukemia/small lymphocytic lymphoma. Hum Pathol 2006; 37:152–9. PubMed

Nunes C, Wong R, Mason M, Fegan C, Man S, Pepper C. Expansion of a CD8+PD‐1+ replicative senescence phenotype in early stage CLL patients is associated with inverted CD4:CD8 ratios and disease progression. Clin Cancer Res 2012; 18:678–87. PubMed

Ramsay AG, Johnson AJ, Lee AM, Gorgün G, Le Dieu R, Blum W et al Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 2008; 118:2427–37. PubMed PMC

McClanahan F, Hanna B, Miller S, Clear AJ, Lichter P, Gribben JG et al PD‐L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood 2015; 126:203–11. PubMed PMC

Jain N, Basu S, Thompson PA, Ohanian M, Ferrajoli A, Pemmaraju N et al Nivolumab combined with ibrutinib for CLL and Richter transformation: a phase II trial. Blood 2016; 128:59.

Ding W, Le‐Rademacher J, Call TG, Parikh SA, Leis JF, Shanafelt TD et al PD‐1 blockade with pembrolizumab in relapsed CLL including Richter's transformation: an updated report from a phase 2 trial (MC1485). Blood 2016; 128:4392.

Berger R, Rotem‐Yehudar R, Slama G, Landes S, Kneller A, Leiba M et al Phase I safety and pharmacokinetic study of CT‐011, a humanized antibody interacting with PD‐1, in patients with advanced hematologic malignancies. Clin Cancer Res 2008; 14:3044–51. PubMed

Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND et al Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374:2209–21. PubMed PMC

Tamura H, Dan K, Tamada K, Nakamura K, Shioi Y, Hyodo H et al Expression of functional B7‐H2 and B7.2 costimulatory molecules and their prognostic implications in de novo acute myeloid leukemia. Clin Cancer Res 2005; 11:5708–17. PubMed

Berthon C, Driss V, Liu J, Kuranda K, Leleu X, Jouy N et al In acute myeloid leukemia, B7‐H1 (PD‐L1) protection of blasts from cytotoxic T cells is induced by TLR ligands and interferon‐γ and can be reversed using MEK inhibitors. Cancer Immunol Immunother 2010; 59:1839–49. PubMed PMC

Krönig H, Kremmler L, Haller B, Englert C, Peschel C, Andreesen R et al Interferon‐induced programmed death‐ligand 1 (PD‐L1/B7‐H1) expression increases on human acute myeloid leukemia blast cells during treatment. Eur J Haematol 2014; 92:195–203. PubMed

Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Köhnke T et al Blockade of the PD‐1/PD‐L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T‐cell‐induced immune escape mechanism. Leukemia 2016; 30:484–91. PubMed

Chen X, Liu S, Wang L, Zhang W, Ji Y, Ma X. Clinical significance of B7‐H1 (PD‐L1) expression in human acute leukemia. Cancer Biol Ther 2008; 7:622–7. PubMed

Norde WJ, Maas F, Hobo W, Korman A, Quigley M, Kester MGD et al PD‐1/PD‐L1 interactions contribute to functional T‐cell impairment in patients who relapse with cancer after allogeneic stem cell transplantation. Cancer Res 2011; 71:5111–22. PubMed

Zhang L, Gajewski TF, Kline J. PD‐1/PD‐L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 2009; 114: 1545–52. PubMed PMC

Ørskov AD, Treppendahl MB, Skovbo A, Holm MS, Friis LS, Hokland M et al Hypomethylation and up‐regulation of PD‐1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD‐1 and DNA methylation. Oncotarget 2015; 6:9612–26. PubMed PMC

Daver N, Basu S, Garcia‐Manero G, Cortes JE, Ravandi F, Jabbour EJ et al Phase IB/II study of nivolumab in combination with azacytidine (AZA) in patients (pts) with relapsed acute myeloid leukemia (AML). Blood 2016; 128:763. PubMed

Kondo A, Yamashita T, Tamura H, Zhao W, Tsuji T, Shimizu M et al Interferon‐γ and tumor necrosis factor‐α induce an immunoinhibitory molecule, B7‐H1, via nuclear factor‐κB activation in blasts in myelodysplastic syndromes. Blood 2010; 116:1124–31. PubMed PMC

Yang H, Bueso‐Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng Q‐R et al Expression of PD‐L1, PD‐L2, PD‐1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 2014; 28:1280–8. PubMed PMC

Rivera GA, Saramipoor Behbahan I, Greenberg PL. Immune checkpoint pathways: perspectives on myeloid malignancies. Leuk Lymphoma 2016; 57:995–1001. PubMed

Garcia‐Manero G, Daver NG, Montalban‐Bravo G, Jabbour EJ, DiNardo CD, Kornblau SM et al A phase II study evaluating the combination of nivolumab (Nivo) or ipilimumab (Ipi) with azacitidine in Pts with previously treated or untreated myelodysplastic syndromes (MDS). Blood 2016; 128:344.

Garcia‐Manero G, Tallman MS, Martinelli G, Ribrag V, Yang H, Balakumaran A et al Pembrolizumab, a PD‐1 inhibitor, in patients with myelodysplastic syndrome (MDS) after failure of hypomethylating agent treatment. Blood 2016; 128:345.

Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y et al Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med 2016; 375:1749–55. PubMed PMC

Spisek R, Dhodapkar MV. Towards a better way to die with chemotherapy: role of heat shock protein exposure on dying tumor cells. Cell Cycle 2007; 6:1962–5. PubMed

Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E et al Combination therapy with anti‐PD‐1, Anti‐TIM‐3, and focal radiation results in regression of murine gliomas. Clin Cancer Res 2017; 23:124–36. PubMed PMC

Badros AZ, Hyjek E, Ma N, Lesokhin AM, Rapoport AP, Kocoglu MH et al Pembrolizumab in Combination with Pomalidomide and Dexamethasone for Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2016; 128:490. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace