Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure

. 2009 Aug ; 85 (2) : 204-13. [epub] 20090806

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19664745
Odkazy

PubMed 19664745
PubMed Central PMC2725269
DOI 10.1016/j.ajhg.2009.07.010
PII: S0002-9297(09)00301-2
Knihovny.cz E-zdroje

Through linkage analysis and candidate gene sequencing, we identified three unrelated families with the autosomal-dominant inheritance of early onset anemia, hypouricosuric hyperuricemia, progressive kidney failure, and mutations resulting either in the deletion (p.Leu16del) or the amino acid exchange (p.Leu16Arg) of a single leucine residue in the signal sequence of renin. Both mutations decrease signal sequence hydrophobicity and are predicted by bioinformatic analyses to damage targeting and cotranslational translocation of preprorenin into the endoplasmic reticulum (ER). Transfection and in vitro studies confirmed that both mutations affect ER translocation and processing of nascent preprorenin, resulting either in reduced (p.Leu16del) or abolished (p.Leu16Arg) prorenin and renin biosynthesis and secretion. Expression of renin and other components of the renin-angiotensin system was decreased accordingly in kidney biopsy specimens from affected individuals. Cells stably expressing the p.Leu16del protein showed activated ER stress, unfolded protein response, and reduced growth rate. It is likely that expression of the mutant proteins has a dominant toxic effect gradually reducing the viability of renin-expressing cells. This alters the intrarenal renin-angiotensin system and the juxtaglomerular apparatus functionality and leads to nephron dropout and progressive kidney failure. Our findings provide insight into the functionality of renin-angiotensin system and stress the importance of renin analysis in families and individuals with early onset hyperuricemia, anemia, and progressive kidney failure.

Zobrazit více v PubMed

Wong C., Kanetsky P., Raj D. Genetic polymorphisms of the RAS-cytokine pathway and chronic kidney disease. Pediatr. Nephrol. 2008;23:1037–1051. PubMed PMC

Gribouval O., Gonzales M., Neuhaus T., Aziza J., Bieth E., Laurent N., Bouton J.M., Feuillet F., Makni S., Ben Amar H. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet. 2005;37:964–968. PubMed

Villard E., Lalau J.D., van Hooft I.S., Derkx F.H., Houot A.M., Pinet F., Corvol P., Soubrier F. A mutant renin gene in familial elevation of prorenin. J. Biol. Chem. 1994;269:30307–30312. PubMed

Imai T., Miyazaki H., Hirose S., Hori H., Hayashi T., Kageyama R., Ohkubo H., Nakanishi S., Murakami K. Cloning and sequence analysis of cDNA for human renin precursor. Proc. Natl. Acad. Sci. USA. 1983;80:7405–7409. PubMed PMC

Paul M., Poyan Mehr A., Kreutz R. Physiology of local renin-angiotensin systems. Physiol. Rev. 2006;86:747–803. PubMed

Hodanova K., Majewski J., Kublova M., Vyletal P., Kalbacova M., Stiburkova B., Hulkova H., Chagnon Y.C., Lanouette C.M., Marinaki A. Mapping of a new candidate locus for uromodulin-associated kidney disease (UAKD) to chromosome 1q41. Kidney Int. 2005;68:1472–1482. PubMed

Vylet'al P., Kublova M., Kalbacova M., Hodanova K., Baresova V., Stiburkova B., Sikora J., Hulkova H., Zivny J., Majewski J. Alterations of uromodulin biology: A common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int. 2006;70:1155–1169. PubMed

Kmoch S., Hartmannova H., Stiburkova B., Krijt J., Zikanova M., Sebesta I. Human adenylosuccinate lyase (ADSL), cloning and characterization of full-length cDNA and its isoform, gene structure and molecular basis for ADSL deficiency in six patients. Hum. Mol. Genet. 2000;9:1501–1513. PubMed

Bendtsen J.D., Nielsen H., von Heijne G., Brunak S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004;340:783–795. PubMed

Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. PubMed

Lyko F., Martoglio B., Jungnickel B., Rapoport T.A., Dobberstein B. Signal sequence processing in rough microsomes. J. Biol. Chem. 1995;270:19873–19878. PubMed

Walter P., Blobel G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 1983;96:84–93. PubMed

Dultz E., Hildenbeutel M., Martoglio B., Hochman J., Dobberstein B., Kapp K. The signal peptide of the mouse mammary tumor virus Rem protein is released from the endoplasmic reticulum membrane and accumulates in nucleoli. J. Biol. Chem. 2008;283:9966–9976. PubMed

Wiltfang J., Arold N., Neuhoff V. A new multiphasic buffer system for sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins and peptides with molecular masses 100,000–1000, and their detection with picomolar sensitivity. Electrophoresis. 1991;12:352–366. PubMed

Jarjanazi H., Savas S., Pabalan N., Dennis J.W., Ozcelik H. Biological implications of SNPs in signal peptide domains of human proteins. Proteins. 2008;70:394–403. PubMed

Rothwell V., Kosowski S., Hadjilambris O., Baska R., Norman J. Glycosylation of active human renin is necessary for secretion: effect of targeted modifications of Asn-5 and Asn-75. DNA Cell Biol. 1993;12:291–298. PubMed

Yoshida H., Matsui T., Yamamoto A., Okada T., Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881–891. PubMed

Sagnella G.A., Peart W.S. Studies on the isolation and properties of renin granules from the rat kidney cortex. Biochem. J. 1979;182:301–309. PubMed PMC

Paul M., Nakamura N., Pratt R.E., Dzau V.J. Glycosylation influences intracellular transit time and secretion rate of human prorenin in transfected cells. J. Hypertens. Suppl. 1988;6:S487–S489. PubMed

Hegde R.S., Bernstein H.D. The surprising complexity of signal sequences. Trends Biochem. Sci. 2006;31:563–571. PubMed

Danovitch G.M. Uric acid transport in renal failure. A review. Nephron. 1972;9:291–299. PubMed

Hart T.C., Gorry M.C., Hart P.S., Woodard A.S., Shihabi Z., Sandhu J., Shirts B., Xu L., Zhu H., Barmada M.M. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 2002;39:882–892. PubMed PMC

Hubert C., Savary K., Gasc J.M., Corvol P. The hematopoietic system: A new niche for the renin-angiotensin system. Nat. Clin. Pract. Cardiovasc. Med. 2006;3:80–85. PubMed

Donnelly S., Shah B.R. Erythropoietin deficiency in hyporeninemia. Am. J. Kidney Dis. 1999;33:947–953. PubMed

Yeap B.B., Beilin J., Shi Z., Knuiman M.W., Olynyk J.K., Bruce D.G., Milward E.A. Serum testosterone levels correlate with haemoglobin in middle-aged and older men. Intern. Med. J. 2008 in press. Published online August 16, 2008. PubMed

Ito M., Jameson J.L., Ito M. Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus. Cellular toxicity caused by the accumulation of mutant vasopressin precursors within the endoplasmic reticulum. J. Clin. Invest. 1997;99:1897–1905. PubMed PMC

Bonapace G., Waheed A., Shah G.N., Sly W.S. Chemical chaperones protect from effects of apoptosis-inducing mutation in carbonic anhydrase IV identified in retinitis pigmentosa 17. Proc. Natl. Acad. Sci. USA. 2004;101:12300–12305. PubMed PMC

Rebello G., Ramesar R., Vorster A., Roberts L., Ehrenreich L., Oppon E., Gama D., Bardien S., Greenberg J., Bonapace G. Apoptosis-inducing signal sequence mutation in carbonic anhydrase IV identified in patients with the RP17 form of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA. 2004;101:6617–6622. PubMed PMC

Datta R., Waheed A., Shah G.N., Sly W.S. Signal sequence mutation in autosomal dominant form of hypoparathyroidism induces apoptosis that is corrected by a chemical chaperone. Proc. Natl. Acad. Sci. USA. 2007;104:19989–19994. PubMed PMC

Datta R., Waheed A., Bonapace G., Shah G.N., Sly W.S. Pathogenesis of retinitis pigmentosa associated with apoptosis-inducing mutations in carbonic anhydrase IV. Proc. Natl. Acad. Sci. USA. 2009;106:3437–3442. PubMed PMC

Marciniak S.J., Ron D. Endoplasmic reticulum stress signaling in disease. Physiol. Rev. 2006;86:1133–1149. PubMed

Kaufman R.J. Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 2002;110:1389–1398. PubMed PMC

Pentz E.S., Moyano M.A., Thornhill B.A., Sequeira Lopez M.L., Gomez R.A. Ablation of renin-expressing juxtaglomerular cells results in a distinct kidney phenotype. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;286:R474–R483. PubMed

Wilcox W.D. Abnormal serum uric acid levels in children. J. Pediatr. 1996;128:731–741. PubMed

Levey A.S., Bosch J.P., Lewis J.B., Greene T., Rogers N., Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999;130:461–470. PubMed

Schwartz G.J., Haycock G.B., Edelmann C.M., Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58:259–263. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Novel Monoallelic ALG5 Variant Causing Late-Onset ADPKD and Tubulointerstitial Fibrosis

. 2024 Jul ; 9 (7) : 2209-2226. [epub] 20240415

Autosomal dominant tubulointerstitial kidney disease: A review

. 2022 Sep ; 190 (3) : 309-324. [epub] 20221017

Autosomal dominant tubulointerstitial kidney disease: more than just HNF1β

. 2022 May ; 37 (5) : 933-946. [epub] 20210522

Phenylbutyrate rescues the transport defect of the Sec61α mutations V67G and T185A for renin

. 2022 Apr ; 5 (4) : . [epub] 20220121

An international cohort study of autosomal dominant tubulointerstitial kidney disease due to REN mutations identifies distinct clinical subtypes

. 2020 Dec ; 98 (6) : 1589-1604. [epub] 20200801

Outcomes of patient self-referral for the diagnosis of several rare inherited kidney diseases

. 2020 Jan ; 22 (1) : 142-149. [epub] 20190724

Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease

. 2018 Oct 30 ; 19 (1) : 301. [epub] 20181030

Noninvasive Immunohistochemical Diagnosis and Novel MUC1 Mutations Causing Autosomal Dominant Tubulointerstitial Kidney Disease

. 2018 Sep ; 29 (9) : 2418-2431. [epub] 20180702

Clinical manifestations and molecular aspects of phosphoribosylpyrophosphate synthetase superactivity in females

. 2018 Jul 01 ; 57 (7) : 1180-1185.

Identification of a novel UMOD mutation (c.163G>A) in a Brazilian family with autosomal dominant tubulointerstitial kidney disease

. 2018 Mar 01 ; 51 (3) : e6560. [epub] 20180301

Autosomal Dominant Tubulointerstitial Kidney Disease

. 2017 Mar ; 24 (2) : 86-93.

Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia

. 2016 Jul 07 ; 99 (1) : 174-87.

Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management--A KDIGO consensus report

. 2015 Oct ; 88 (4) : 676-83. [epub] 20150304

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...