A Novel Monoallelic ALG5 Variant Causing Late-Onset ADPKD and Tubulointerstitial Fibrosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39081747
PubMed Central
PMC11284371
DOI
10.1016/j.ekir.2024.04.031
PII: S2468-0249(24)01654-1
Knihovny.cz E-zdroje
- Klíčová slova
- ALG5, Golgi apparatus, N-Linked protein glycosylation, UMOD, autosomal dominant tubulo-interstitial kidney disease, autosomal-dominant polycystic kidney disease,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Monoallelic variants in the ALG5 gene encoding asparagine-linked glycosylation protein 5 homolog (ALG5) have been recently shown to disrupt polycystin-1 (PC1) maturation and trafficking via underglycosylation, causing an autosomal dominant polycystic kidney disease-like (ADPKD-like) phenotype and interstitial fibrosis. In this report, we present clinical, genetic, histopathologic, and protein structure and functional correlates of a new ALG5 variant, p.R79W, that we identified in 2 distant genetically related Irish families displaying an atypical late-onset ADPKD phenotype combined with tubulointerstitial damage. METHODS: Whole exome and targeted sequencing were used for segregation analysis of available relatives. This was followed by immunohistochemistry examinations of kidney biopsies, and targeted (UMOD, MUC1) and untargeted plasma proteome and N-glycomic studies. RESULTS: We identified a monoallelic ALG5 variant [GRCh37 (NM_013338.5): g.37569565G>A, c.235C>T; p.R79W] that cosegregates in 23 individuals, of whom 18 were clinically affected. We detected abnormal localization of ALG5 in the Golgi apparatus of renal tubular cells in patients' kidney specimens. Further, we detected the pathological accumulation of uromodulin, an N-glycosylated glycosylphosphatidylinositol (GPI)-anchored protein, in the endoplasmic reticulum (ER), but not mucin-1, an O- and N-glycosylated protein. Biochemical investigation revealed decreased plasma and urinary uromodulin levels in clinically affected individuals. Proteomic and glycoproteomic profiling revealed the dysregulation of chronic kidney disease (CKD)-associated proteins. CONCLUSION: ALG5 dysfunction adversely affects maturation and trafficking of N-glycosylated and GPI anchored protein uromodulin, leading to structural and functional changes in the kidney. Our findings confirm ALG5 as a cause of late-onset ADPKD and provide additional insight into the molecular mechanisms of ADPKD-ALG5.
Department of Medicine Royal College of Surgeons in Ireland Dublin Ireland
Department of Nephrology and Transplantation Beaumont Hospital Dublin Ireland
Department of Pathology Beaumont Hospital Dublin Ireland
Department of Radiology Beaumont Hospital and Royal College of Surgeons in Ireland Dublin Ireland
Institute of Microbiology The Czech Academy of Sciences Vestec Czech Republic
School of Pharmacy and Biomolecular Sciences Royal College of Surgeons Dublin Ireland
Section on Nephrology Wake Forest School of Medicine Winston Salem North Carolina USA
Zobrazit více v PubMed
Bergmann C., Guay-Woodford L.M., Harris P.C., Horie S., Peters D.J.M., Torres V.E. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4:50. doi: 10.1038/s41572-018-0047-y. PubMed DOI PMC
Benson K.A., Murray S.L., Senum S.R., et al. The genetic landscape of polycystic kidney disease in Ireland. Eur J Hum Genet. 2021;29:827–838. doi: 10.1038/s41431-020-00806-5. PubMed DOI PMC
Cornec-Le Gall E., Alam A., Perrone R.D. Autosomal dominant polycystic kidney disease. Lancet. 2019;393:919–935. doi: 10.1016/S0140-6736(18)32782-X. PubMed DOI
Heyer C.M., Sundsbak J.L., Abebe K.Z., et al. Predicted mutation strength of nontruncating PKD1 mutations Aids genotype-phenotype correlations in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27:2872–2884. doi: 10.1681/ASN.2015050583. PubMed DOI PMC
Senum S.R., Li Y.S.M., Benson K.A., et al. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am J Hum Genet. 2022;109:136–156. doi: 10.1016/j.ajhg.2021.11.016. PubMed DOI PMC
Lemoine H., Raud L., Foulquier F., et al. Monoallelic pathogenic ALG5 variants cause atypical polycystic kidney disease and interstitial fibrosis. Am J Hum Genet. 2022;109:1484–1499. doi: 10.1016/j.ajhg.2022.06.013. PubMed DOI PMC
Inker L.A., Eneanya N.D., Coresh J., et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med. 2021;385:1737–1749. doi: 10.1056/NEJMoa2102953. PubMed DOI PMC
Levin A., Stevens P.E. Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int. 2014;85:49–61. doi: 10.1038/ki.2013.444. PubMed DOI
Vylet’al P., Kublova M., Kalbacova M., et al. Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int. 2006;70:1155–1169. doi: 10.1038/sj.ki.5001728. PubMed DOI
Zivna M., Hulkova H., Matignon M., et al. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet. 2009;85:204–213. doi: 10.1016/j.ajhg.2009.07.010. PubMed DOI PMC
Blumenstiel B., DeFelice M., Birsoy O., et al. Development and validation of a mass spectrometry-based assay for the molecular diagnosis of mucin-1 kidney disease. J Mol Diagn. 2016;18:566–571. doi: 10.1016/j.jmoldx.2016.03.003. PubMed DOI
Zivna M., Kidd K., Pristoupilova A., et al. Noninvasive immunohistochemical diagnosis and novel MUC1 mutations causing autosomal dominant tubulointerstitial kidney disease. J Am Soc Nephrol. 2018;29:2418–2431. doi: 10.1681/ASN.2018020180. PubMed DOI PMC
Murray S.L., Dorman A., Benson K.A., et al. Utility of genomic testing after renal biopsy. Am J Nephrol. 2020;51:43–53. doi: 10.1159/000504869. PubMed DOI PMC
Elhassan E.A.E., Murray S.L., Connaughton D.M., et al. The utility of a genetic kidney disease clinic employing a broad range of genomic testing platforms: experience of the Irish Kidney Gene Project. J Nephrol. 2022;35:1655–1665. doi: 10.1007/s40620-021-01236-2. PubMed DOI PMC
Hartmannová H., Piherová L., Tauchmannová K., et al. Acadian variant of Fanconi syndrome is caused by mitochondrial respiratory chain complex I deficiency due to a non-coding mutation in complex I assembly factor NDUFAF6. Hum Mol Genet. 2016;25:4062–4079. doi: 10.1093/hmg/ddw245. PubMed DOI
Chang C.C., Chow C.C., Tellier L.C., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC
Gandini R., Reichenbach T., Tan T.C., Divne C. Structural basis for dolichylphosphate mannose biosynthesis. Nat Commun. 2017;8:120. doi: 10.1038/s41467-017-00187-2. PubMed DOI PMC
Landmann L. Deconvolution improves colocalization analysis of multiple fluorochromes in 3D confocal data sets more than filtering techniques. J Microsc. 2002;208:134–147. doi: 10.1046/j.1365-2818.2002.01068.x. PubMed DOI
Manders E.M.M., Verbeek F.J., Aten J.A. Measurement of co-localization of objects in dual-colour confocal images. J Microsc. 1993;169:375–382. doi: 10.1111/j.1365-2818.1993.tb03313.x. PubMed DOI
Vylet’al P., Kidd K., Ainsworth H.C., et al. Plasma Mucin-1 (CA15-3) levels in autosomal dominant tubulointerstitial kidney disease due to MUC1 mutations. Am J Nephrol. 2021;52:378–387. doi: 10.1159/000515810. PubMed DOI PMC
Seta N., Barnier A., Hochedez F., Besnard M.A., Durand G. Diagnostic value of Western blotting in carbohydrate-deficient glycoprotein syndrome. Clin Chim Acta. 1996;254:131–140. doi: 10.1016/0009-8981(96)06379-6. PubMed DOI
Darebna P., Novak P., Kucera R., et al. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. J Proteomics. 2017;153:44–52. doi: 10.1016/j.jprot.2016.09.004. PubMed DOI PMC
Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI
Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Burda P., Aebi M. The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta. 1999;1426:239–257. doi: 10.1016/s0304-4165(98)00127-5. PubMed DOI
Jagadeesh K.A., Wenger A.M., Berger M.J., et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet. 2016;48:1581–1586. doi: 10.1038/ng.3703. PubMed DOI
Lavu S., Vaughan L.E., Senum S.R., et al. The value of genotypic and imaging information to predict functional and structural outcomes in ADPKD. JCI Insight. 2020;5 doi: 10.1172/jci.insight.138724. PubMed DOI PMC
Bruneel A., Cholet S., Tran N.T., Mai T.D., Fenaille F. CDG biochemical screening: where do we stand? Biochim Biophys Acta (BBA) Gen Subj. 2020;1864 doi: 10.1016/j.bbagen.2020.129652. PubMed DOI
Rule A.D., Sasiwimonphan K., Lieske J.C., Keddis M.T., Torres V.E., Vrtiska T.J. Characteristics of renal cystic and solid lesions based on contrast-enhanced computed tomography of potential kidney donors. Am J Kidney Dis. 2012;59:611–618. doi: 10.1053/j.ajkd.2011.12.022. PubMed DOI PMC
Porath B., Gainullin V.G., Cornec-Le Gall E., et al. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet. 2016;98:1193–1207. doi: 10.1016/j.ajhg.2016.05.004. PubMed DOI PMC
Al-Said J., Brumback M.A., Moghazi S., Baumgarten D.A., O’Neill W.C. Reduced renal function in patients with simple renal cysts. Kidney Int. 2004;65:2303–2308. doi: 10.1111/j.1523-1755.2004.00651.x. PubMed DOI
Dornan L.G., Simpson J.C. Rab6-mediated retrograde trafficking from the Golgi: the trouble with tubules. Small GTPases: GD, and J, C.S. 2023;14:26–44. doi: 10.1080/21541248.2023.2238330. PubMed DOI PMC
Kim W.K., Choi W., Deshar B., Kang S., Kim J. Golgi stress response: new insights into the pathogenesis and therapeutic targets of human diseases. Mol Cells. 2023;46:191–199. doi: 10.14348/molcells.2023.2152. PubMed DOI PMC
Dvela-Levitt M., Kost-Alimova M., Emani M., et al. Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell. 2019;178:521–535.e23. doi: 10.1016/j.cell.2019.07.002. PubMed DOI
Zivna M., Kidd K.O., Baresova V., Hulkova H., Kmoch S., Bleyer AJ, Sr. Autosomal dominant tubulointerstitial kidney disease: a review. Am J Med Genet C. 2022;190:309–324. doi: 10.1002/ajmg.c.32008. PubMed DOI PMC
Cornec-Le Gall E., Olson R.J., Besse W., et al. Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease. Am J Hum Genet. 2018;102:832–844. doi: 10.1016/j.ajhg.2018.03.013. PubMed DOI PMC
Besse W., Chang A.R., Luo J.Z., et al. ALG9 mutation carriers develop kidney and liver cysts. J Am Soc Nephrol. 2019;30:2091–2102. doi: 10.1681/ASN.2019030298. PubMed DOI PMC