The utility of a genetic kidney disease clinic employing a broad range of genomic testing platforms: experience of the Irish Kidney Gene Project
Jazyk angličtina Země Itálie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35099770
PubMed Central
PMC9300532
DOI
10.1007/s40620-021-01236-2
PII: 10.1007/s40620-021-01236-2
Knihovny.cz E-zdroje
- Klíčová slova
- Chronic kidney disease, Genetic kidney disease, Inherited kidney diseases, Next-generation sequencing, Polycystic kidney genetics,
- MeSH
- chronická renální insuficience * diagnóza epidemiologie genetika MeSH
- dospělí MeSH
- genetické testování metody MeSH
- kationtové kanály TRPP genetika MeSH
- ledviny MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mutace MeSH
- polycystické ledviny autozomálně dominantní * diagnóza MeSH
- prospektivní studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kationtové kanály TRPP MeSH
BACKGROUND AND AIMS: Genetic testing presents a unique opportunity for diagnosis and management of genetic kidney diseases (GKD). Here, we describe the clinical utility and valuable impact of a specialized GKD clinic, which uses a variety of genomic sequencing strategies. METHODS: In this prospective cohort study, we undertook genetic testing in adults with suspected GKD according to prespecified criteria. Over 7 years, patients were referred from tertiary centres across Ireland to an academic medical centre as part of the Irish Kidney Gene Project. RESULTS: Among 677 patients, the mean age was of 37.2 ± 13 years, and 73.9% of the patients had family history of chronic kidney disease (CKD). We achieved a molecular diagnostic rate of 50.9%. Four genes accounted for more than 70% of identified pathogenic variants: PKD1 and PKD2 (n = 186, 53.4%), MUC1 (8.9%), and COL4A5 (8.3%). In 162 patients with a genetic diagnosis, excluding PKD1/PKD2, the a priori diagnosis was confirmed in 58% and in 13% the diagnosis was reclassified. A genetic diagnosis was established in 22 (29.7%) patients with CKD of uncertain aetiology. Based on genetic testing, a diagnostic kidney biopsy was unnecessary in 13 (8%) patients. Presence of family history of CKD and the underlying a priori diagnosis were independent predictors (P < 0.001) of a positive genetic diagnosis. CONCLUSIONS: A dedicated GKD clinic is a valuable resource, and its implementation of various genomic strategies has resulted in a direct, demonstrable clinical and therapeutic benefits to affected patients.
Department of Medicine Dublin Royal College of Surgeons in Ireland Dublin Ireland
Department of Nephrology and Internal Medicine University Hospital Limerick Limerick Ireland
Department of Nephrology and Transplantation Beaumont Hospital Dublin Ireland
Department of Paediatrics Boston Children's Hospital Harvard Medical School Boston MA 02115 USA
Department of Pathology Beaumont Hospital Dublin Ireland
Department of Pathology Royal College of Surgeons in Ireland Dublin Ireland
Division of Nephrology and Hypertension Mayo Clinic Rochester MN USA
Division of Nephrology Department of Medicine London Health Sciences Centre London ON Canada
Nephrology Department Galway University Hospitals Saolta University Healthcare Group Galway Ireland
School of Pharmacy and Biomolecular Sciences Royal College of Surgeons Dublin Ireland
Schulich School of Medicine and Dentistry University of Western Ontario London ON Canada
Section on Nephrology Wake Forest School of Medicine Winston Salem NC USA
Zobrazit více v PubMed
Devuyst O, et al. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet. 2014;383(9931):1844–1859. doi: 10.1016/S0140-6736(14)60659-0. PubMed DOI PMC
Soliman NA. Orphan kidney diseases. Nephron Clin Pract. 2012;120(4):c194–c199. doi: 10.1159/000339785. PubMed DOI
Connaughton DM, et al. The Irish Kidney Gene project-prevalence of family history in patients with kidney disease in Ireland. Nephron. 2015;130(4):293–301. doi: 10.1159/000436983. PubMed DOI
Cocchi E, Nestor JG, Gharavi AG. Clinical genetic screening in adult patients with kidney disease. Clin J Am Soc Nephrol. 2020;15(10):1497–1510. doi: 10.2215/CJN.15141219. PubMed DOI PMC
Thomas CP, et al. Initial experience from a renal genetics clinic demonstrates a distinct role in patient management. Genet Med. 2020;22(6):1025–1035. doi: 10.1038/s41436-020-0772-y. PubMed DOI PMC
Mallett A, et al. A multidisciplinary renal genetics clinic improves patient diagnosis. Med J Aust. 2016;204(2):58–59. doi: 10.5694/mja15.01157. PubMed DOI
IKGP. The Irish Kidney Gene Porject. 2021; Available from: http://www.beaumont.ie/kidneycentre-aboutus-irishkidneygeneproject. Cited 10 Dec 2021
HSE. National Service Plan 2020. 2020; Available from: https://www.hse.ie/eng/services/publications/national-service-plan-2020.pdf. Cited 21 May 2021
Jayasinghe K, et al. Clinical impact of genomic testing in patients with suspected monogenic kidney disease. Genet Med. 2021;23(1):183–191. doi: 10.1038/s41436-020-00963-4. PubMed DOI PMC
Groopman EE, et al. Diagnostic utility of exome sequencing for kidney disease. N Engl J Med. 2019;380(2):142–151. doi: 10.1056/NEJMoa1806891. PubMed DOI PMC
Connaughton DM, et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 2019;95(4):914–928. doi: 10.1016/j.kint.2018.10.031. PubMed DOI PMC
Lata S, et al. Whole-exome sequencing in adults with chronic kidney disease: a pilot study. Ann Intern Med. 2018;168(2):100–109. doi: 10.7326/M17-1319. PubMed DOI PMC
Ali H, et al. PKD1 duplicated regions limit clinical utility of whole exome sequencing for genetic diagnosis of autosomal dominant polycystic kidney disease. Sci Rep. 2019;9(1):4141. doi: 10.1038/s41598-019-40761-w. PubMed DOI PMC
Bullich G, et al. A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases. Kidney Int. 2018;94(2):363–371. doi: 10.1016/j.kint.2018.02.027. PubMed DOI
Domingo-Gallego A et al. (2021) Clinical utility of genetic testing in early-onset kidney disease: seven genes are the main players. Nephrol Dial Transplant PubMed
Mansilla MA, et al. Targeted broad-based genetic testing by next-generation sequencing informs diagnosis and facilitates management in patients with kidney diseases. Nephrol Dial Transplant. 2021;36(2):295–305. doi: 10.1093/ndt/gfz173. PubMed DOI PMC
Eckardt K-U, et al. Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management—a KDIGO consensus report. Kidney Int. 2015;88(4):676–683. doi: 10.1038/ki.2015.28. PubMed DOI
Blumenstiel B, et al. Development and validation of a mass spectrometry-based assay for the molecular diagnosis of Mucin-1 kidney disease. J Mol Diagn. 2016;18(4):566–571. doi: 10.1016/j.jmoldx.2016.03.003. PubMed DOI
Murray SL, et al. Utility of genomic testing after renal biopsy. Am J Nephrol. 2020;51(1):43–53. doi: 10.1159/000504869. PubMed DOI PMC
Živná M, et al. Noninvasive immunohistochemical diagnosis and novel MUC1 mutations causing autosomal dominant tubulointerstitial kidney disease. J Am Soc Nephrol. 2018;29(9):2418–2431. doi: 10.1681/ASN.2018020180. PubMed DOI PMC
Cormican S, et al. Autosomal dominant tubulointerstitial kidney disease (ADTKD) in Ireland. Ren Fail. 2019;41(1):832–841. doi: 10.1080/0886022X.2019.1655452. PubMed DOI PMC
Stapleton CP, et al. An exome sequencing study of 10 families with IgA nephropathy. Nephron. 2020;144(2):72–83. doi: 10.1159/000503564. PubMed DOI
Benson KA, et al. The genetic landscape of polycystic kidney disease in Ireland. Eur J Hum Genet. 2021;29(5):827–838. doi: 10.1038/s41431-020-00806-5. PubMed DOI PMC
Lane BM, et al. A rare autosomal dominant variant in regulator of calcineurin type 1 (RCAN1) gene confers enhanced calcineurin activity and may cause FSGS. J Am Soc Nephrol. 2021;32:1682–1695. doi: 10.1681/ASN.2020081234. PubMed DOI PMC
CeGAT (2020)
Vylet'al P, et al. Plasma mucin-1 (CA15–3) levels in autosomal dominant tubulointerstitial kidney disease due to MUC1 mutations. Am J Nephrol. 2021;52:1–10. doi: 10.1159/000513952. PubMed DOI PMC
Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Central Statistics Office (2021) Census 2016 results
Tan YC, et al. Novel method for genomic analysis of PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease. Hum Mutat. 2009;30(2):264–273. doi: 10.1002/humu.20842. PubMed DOI
Cornec-Le Gall E, et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol. 2013;24(6):1006–1013. doi: 10.1681/ASN.2012070650. PubMed DOI PMC
Rossetti S, et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2007;18(7):2143–2160. doi: 10.1681/ASN.2006121387. PubMed DOI
Wang M, et al. Contributions of rare gene variants to familial and sporadic FSGS. J Am Soc Nephrol. 2019;30(9):1625–1640. doi: 10.1681/ASN.2019020152. PubMed DOI PMC
Gribouval O, et al. Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney Int. 2018;94(5):1013–1022. doi: 10.1016/j.kint.2018.07.024. PubMed DOI
Jarvik GP, et al. Return of genomic results to research participants: the floor, the ceiling, and the choices in between. Am J Hum Genet. 2014;94(6):818–826. doi: 10.1016/j.ajhg.2014.04.009. PubMed DOI PMC
Stokman MF, et al. The expanding phenotypic spectra of kidney diseases: insights from genetic studies. Nat Rev Nephrol. 2016;12(8):472–483. doi: 10.1038/nrneph.2016.87. PubMed DOI
Rare disease gene association discovery in the 100,000 Genomes Project
A Novel Monoallelic ALG5 Variant Causing Late-Onset ADPKD and Tubulointerstitial Fibrosis