Assembly and dynamic regulation of the tip filament of the Bordetella type III secretion system injectisome
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
24-11053S
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004597
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
40980893
PubMed Central
PMC12607632
DOI
10.1128/mbio.01135-25
Knihovny.cz E-zdroje
- Klíčová slova
- Bordetella, Bsp22, EspA, needle tip filament, tip protein, type III secretion system,
- MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- Bordetella bronchiseptica * genetika metabolismus MeSH
- Bordetella pertussis * genetika metabolismus MeSH
- epitelové buňky mikrobiologie MeSH
- faktory virulence rodu Bordetella metabolismus MeSH
- HeLa buňky MeSH
- lidé MeSH
- regulace genové exprese u bakterií * MeSH
- sekreční systém typu III * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- faktory virulence rodu Bordetella MeSH
- sekreční systém typu III * MeSH
UNLABELLED: Many gram-negative bacteria utilize a type III secretion system (T3SS) injectisome to translocate effector proteins directly into host cells. In Bordetella bronchiseptica, a respiratory pathogen of diverse mammals, the T3SS injectisome contains a unique needle tip filament formed by the Bsp22 protein, which is essential for bacterial persistence in mice. Here, we used B. bronchiseptica and Bordetella pertussis strains with in-frame insertions of peptide tags into Bsp22 to investigate filament formation using super-resolution imaging with fluorophore-labeled nanobodies and biarsenic probes. During cultivation on glass coverslips, more than 50% of the bacteria had flexible Bsp22 filaments with an average length of 1 µm after 3 hours of incubation. Filament growth occurred continuously at the distal end. In contrast, during HeLa cell infection, although the T3SS effector BteA was delivered into host cells and the number of filaments per bacterium remained unchanged, filament length was significantly shorter, averaging 0.4 µm after 3 hours of infection. Some Bsp22 filaments formed short physical bridges between bacteria and host cells. During infection of nasal epithelial cells in air-liquid interface cultures, Bsp22 filaments became scarce, with most bacteria lacking detectable filaments. This reduction correlated with a specific decline in bsp22 mRNA levels, while mRNA levels of bscD, encoding the inner membrane ring component of the injectisome, remained stable. Our findings demonstrate that Bsp22 synthesis is tightly regulated in response to environmental cues and highlight how filament characteristics of Bordetella T3SS injectisome change in different environments. IMPORTANCE: Bordetella bronchiseptica and Bordetella pertussis are two closely related respiratory pathogens that employ their T3SS injectisome to deliver the BteA effector into host cells. In this study, we visualized the needle tip filament of their T3SS injectisome, a structure formed by the Bsp22 protein. We demonstrate that during Bordetella cultivation in Stainer-Scholte medium, Bsp22 filaments are abundant and can dynamically extend up to several micrometers in length through the incorporation of new subunits at their distal ends. In contrast, these filaments become shorter and/or less abundant during infection of host cells. This reduction correlates with decreased bsp22 mRNA expression and lower Bsp22 protein levels, while the levels of bscD mRNA, which encodes the inner membrane ring protein of the injectisome, remain stable. These results highlight the adaptability of the Bordetella T3SS injectisome and show how its tip filament structure changes in response to different environments.
Zobrazit více v PubMed
Goodnow RA. 1980. Biology of Bordetella bronchiseptica. Microbiol Rev 44:722–738. doi: 10.1128/mr.44.4.722-738.1980 PubMed DOI PMC
Mattoo S, Cherry JD. 2005. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382. doi: 10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC
Yeung KHT, Duclos P, Nelson EAS, Hutubessy RCW. 2017. An update of the global burden of pertussis in children younger than 5 years: a modelling study. Lancet Infect Dis 17:974–980. doi: 10.1016/S1473-3099(17)30390-0 PubMed DOI
van Schuppen E, Fröberg J, Venkatasubramanian PB, Versteegen P, de Graaf H, Holubová J, Gillard J, van Gageldonk PGM, Joosten I, de Groot R, Šebo P, Berbers GAM, Read RC, Huynen MA, de Jonge MI, Diavatopoulos DA. 2022. Prior exposure to B. pertussis shapes the mucosal antibody response to acellular pertussis booster vaccination. Nat Commun 13:7429. doi: 10.1038/s41467-022-35165-w PubMed DOI PMC
Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, Mooi FR. 2005. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog 1:e45. doi: 10.1371/journal.ppat.0010045 PubMed DOI PMC
Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MTG, Churcher CM, Bentley SD, Mungall KL, et al. 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40. doi: 10.1038/ng1227 PubMed DOI
Park J, Zhang Y, Chen C, Dudley EG, Harvill ET. 2015. Diversity of secretion systems associated with virulence characteristics of the classical bordetellae. Microbiology (Reading) 161:2328–2340. doi: 10.1099/mic.0.000197 PubMed DOI PMC
Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A. 2016. Type III secretion: building and operating a remarkable nanomachine. Trends Biochem Sci 41:175–189. doi: 10.1016/j.tibs.2015.09.005 PubMed DOI
Jenkins J, Worrall LJ, Strynadka NCJ. 2022. Recent structural advances towards understanding of the bacterial type III secretion injectisome. Trends Biochem Sci 47:795–809. doi: 10.1016/j.tibs.2022.04.013 PubMed DOI
Abby SS, Rocha EPC. 2012. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 8:e1002983. doi: 10.1371/journal.pgen.1002983 PubMed DOI PMC
Denise R, Abby SS, Rocha EPC. 2020. The evolution of protein secretion systems by co-option and tinkering of cellular machineries. Trends Microbiol 28:372–386. doi: 10.1016/j.tim.2020.01.005 PubMed DOI
Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galán JE, Aizawa SI. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605. doi: 10.1126/science.280.5363.602 PubMed DOI
Tamano K, Aizawa S, Katayama E, Nonaka T, Imajoh-Ohmi S, Kuwae A, Nagai S, Sasakawa C. 2000. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J 19:3876–3887. doi: 10.1093/emboj/19.15.3876 PubMed DOI PMC
Hoiczyk E, Blobel G. 2001. Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc Natl Acad Sci U S A 98:4669–4674. doi: 10.1073/pnas.071065798 PubMed DOI PMC
Park D, Lara-Tejero M, Waxham MN, Li W, Hu B, Galán JE, Liu J. 2018. Visualization of the type III secretion mediated Salmonella-host cell interface using cryo-electron tomography. Elife 7:e39514. doi: 10.7554/eLife.39514 PubMed DOI PMC
Guo EZ, Galán JE. 2021. Cryo-EM structure of the needle filament tip complex of the Salmonella type III secretion injectisome. Proc Natl Acad Sci USA 118:e2114552118. doi: 10.1073/pnas.2114552118 PubMed DOI PMC
Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC, Bain C, Wolff C, Dougan G, Frankel G. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17:2166–2176. doi: 10.1093/emboj/17.8.2166 PubMed DOI PMC
Sekiya K, Ohishi M, Ogino T, Tamano K, Sasakawa C, Abe A. 2001. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci USA 98:11638–11643. doi: 10.1073/pnas.191378598 PubMed DOI PMC
Zheng W, Peña A, Ilangovan A, Baghshomali YN, Frankel G, Egelman EH, Costa TRD. 2021. Cryoelectron-microscopy structure of the enteropathogenic Escherichia coli type III secretion system EspA filament. Proc Natl Acad Sci USA 118:e2022826118. doi: 10.1073/pnas.2022826118 PubMed DOI PMC
Lyons BJE, Atkinson CE, Deng W, Serapio-Palacios A, Finlay BB, Strynadka NCJ. 2021. Cryo-EM structure of the EspA filament from enteropathogenic Escherichia coli: revealing the mechanism of effector translocation in the T3SS. Structure 29:479–487. doi: 10.1016/j.str.2020.12.009 PubMed DOI
Medhekar B, Shrivastava R, Mattoo S, Gingery M, Miller JF. 2009. Bordetella Bsp22 forms a filamentous type III secretion system tip complex and is immunoprotective in vitro and in vivo. Mol Microbiol 71:492–504. doi: 10.1111/j.1365-2958.2008.06543.x PubMed DOI PMC
Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415–438. doi: 10.1146/annurev-micro-092412-155725 PubMed DOI PMC
Navarrete KM, Bumba L, Prudnikova T, Malcova I, Allsop TR, Sebo P, Kamanova J. 2023. BopN is a gatekeeper of the Bordetella type III secretion system. Microbiol Spectr 11:e0411222. doi: 10.1128/spectrum.04112-22 PubMed DOI PMC
Yuk MH, Harvill ET, Cotter PA, Miller JF. 2000. Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Mol Microbiol 35:991–1004. doi: 10.1046/j.1365-2958.2000.01785.x PubMed DOI
Villarino Romero R, Bibova I, Cerny O, Vecerek B, Wald T, Benada O, Zavadilova J, Osicka R, Sebo P. 2013. The Bordetella pertussis type III secretion system tip complex protein Bsp22 is not a protective antigen and fails to elicit serum antibody responses during infection of humans and mice. Infect Immun 81:2761–2767. doi: 10.1128/IAI.00353-13 PubMed DOI PMC
Crepin VF, Shaw R, Knutton S, Frankel G. 2005. Molecular basis of antigenic polymorphism of EspA filaments: development of a peptide display technology. J Mol Biol 350:42–52. doi: 10.1016/j.jmb.2005.04.060 PubMed DOI
Crepin VF, Martinez E, Shaw RK, Frankel G, Daniell SJ. 2008. Structural and functional properties of chimeric EspA-FliCi filaments of EPEC. J Mol Biol 378:243–250. doi: 10.1016/j.jmb.2008.02.042 PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC
Zhao Z, Zhao Y, Zhuang XY, Lo WC, Baker MAB, Lo CJ, Bai F. 2018. Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-time fluorescence imaging. Nat Commun 9:1885. doi: 10.1038/s41467-018-04288-4 PubMed DOI PMC
Suprynowicz FA, Upadhyay G, Krawczyk E, Kramer SC, Hebert JD, Liu X, Yuan H, Cheluvaraju C, Clapp PW, Boucher RC, Kamonjoh CM, Randell SH, Schlegel R. 2012. Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc Natl Acad Sci USA 109:20035–20040. doi: 10.1073/pnas.1213241109 PubMed DOI PMC
Schmidt H, Guthjahr L, Sauter A, Zech F, Nchioua R, Stenger S, Frick M, Kirchhoff F, Dietl P, Wittekindt OH. 2022. Serially passaged, conditionally reprogrammed nasal epithelial cells as a model to study epithelial functions and SARS-CoV-2 infection. Am J Physiol Cell Physiol 322:C591–C604. doi: 10.1152/ajpcell.00363.2021 PubMed DOI PMC
Zmuda M, Malcova I, Pravdova B, Cerny O, Vondrova D, Kamanova J. 2025. Limited response of primary nasal epithelial cells to Bordetella pertussis infection. Microbiol Spectr. doi: 10.1128/spectrum.01267-25:e0126725 PubMed DOI PMC
Edwards JA, Groathouse NA, Boitano S. 2005. Bordetella bronchiseptica adherence to cilia is mediated by multiple adhesin factors and blocked by surfactant protein A. Infect Immun 73:3618–3626. doi: 10.1128/IAI.73.6.3618-3626.2005 PubMed DOI PMC
Schwinn MK, Machleidt T, Zimmerman K, Eggers CT, Dixon AS, Hurst R, Hall MP, Encell LP, Binkowski BF, Wood KV. 2018. CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem Biol 13:467–474. doi: 10.1021/acschembio.7b00549 PubMed DOI
Westerhausen S, Nowak M, Torres-Vargas CE, Bilitewski U, Bohn E, Grin I, Wagner S. 2020. A NanoLuc luciferase-based assay enabling the real-time analysis of protein secretion and injection by bacterial type III secretion systems. Mol Microbiol 113:1240–1254. doi: 10.1111/mmi.14490 PubMed DOI
Roine E, Wei W, Yuan J, Nurmiaho-Lassila EL, Kalkkinen N, Romantschuk M, He SY. 1997. Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 94:3459–3464. doi: 10.1073/pnas.94.7.3459 PubMed DOI PMC
Li CM, Brown I, Mansfield J, Stevens C, Boureau T, Romantschuk M, Taira S. 2002. The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ. EMBO J 21:1909–1915. doi: 10.1093/emboj/21.8.1909 PubMed DOI PMC
Neves BC, Shaw RK, Frankel G, Knutton S. 2003. Polymorphisms within EspA filaments of enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 71:2262–2265. doi: 10.1128/IAI.71.4.2262-2265.2003 PubMed DOI PMC
Caballero-Flores G, Sakamoto K, Zeng MY, Wang Y, Hakim J, Matus-Acuña V, Inohara N, Núñez G. 2019. Maternal immunization confers protection to the offspring against an attaching and effacing pathogen through delivery of IgG in breast milk. Cell Host Microbe 25:313–323. doi: 10.1016/j.chom.2018.12.015 PubMed DOI PMC
Wilson RK, Shaw RK, Daniell S, Knutton S, Frankel G. 2001. Role of EscF, a putative needle complex protein, in the type III protein translocation system of enteropathogenic Escherichia coli. Cell Microbiol 3:753–762. doi: 10.1046/j.1462-5822.2001.00159.x PubMed DOI
Wang YA, Yu X, Yip C, Strynadka NC, Egelman EH. 2006. Structural polymorphism in bacterial EspA filaments revealed by cryo-EM and an improved approach to helical reconstruction. Structure 14:1189–1196. doi: 10.1016/j.str.2006.05.018 PubMed DOI
Yip CK, Finlay BB, Strynadka NCJ. 2005. Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nat Struct Mol Biol 12:75–81. doi: 10.1038/nsmb879 PubMed DOI
Daniell SJ, Takahashi N, Wilson R, Friedberg D, Rosenshine I, Booy FP, Shaw RK, Knutton S, Frankel G, Aizawa S. 2001. The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol 3:865–871. doi: 10.1046/j.1462-5822.2001.00168.x PubMed DOI
Marlovits TC, Kubori T, Lara-Tejero M, Thomas D, Unger VM, Galán JE. 2006. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441:637–640. doi: 10.1038/nature04822 PubMed DOI
Journet L, Agrain C, Broz P, Cornelis GR. 2003. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302:1757–1760. doi: 10.1126/science.1091422 PubMed DOI
Emerson SU, Tokuyasu K, Simon MI. 1970. Bacterial flagella: polarity of elongation. Science 169:190–192. doi: 10.1126/science.169.3941.190 PubMed DOI
Crepin VF, Shaw R, Abe CM, Knutton S, Frankel G. 2005. Polarity of enteropathogenic Escherichia coli EspA filament assembly and protein secretion. J Bacteriol 187:2881–2889. doi: 10.1128/JB.187.8.2881-2889.2005 PubMed DOI PMC
Hospenthal MK, Costa TRD, Waksman G. 2017. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat Rev Microbiol 15:365–379. doi: 10.1038/nrmicro.2017.40 PubMed DOI
Deane JE, Abrusci P, Johnson S, Lea SM. 2010. Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67:1065–1075. doi: 10.1007/s00018-009-0230-0 PubMed DOI PMC
Drzmisek J, Stipl D, Petrackova D, Vecerek B, Dienstbier A. 2021. Omics analysis of blood-responsive regulon in Bordetella pertussis identifies a novel essential T3SS substrate. Int J Mol Sci 22:736. doi: 10.3390/ijms22020736 PubMed DOI PMC
Diepold A, Wiesand U, Amstutz M, Cornelis GR. 2012. Assembly of the Yersinia injectisome: the missing pieces. Mol Microbiol 85:878–892. doi: 10.1111/j.1365-2958.2012.08146.x PubMed DOI
Mattoo S, Yuk MH, Huang LL, Miller JF. 2004. Regulation of type III secretion in Bordetella. Mol Microbiol 52:1201–1214. doi: 10.1111/j.1365-2958.2004.04053.x PubMed DOI
Kozak NA, Mattoo S, Foreman-Wykert AK, Whitelegge JP, Miller JF. 2005. Interactions between partner switcher orthologs BtrW and BtrV regulate type III secretion in Bordetella. J Bacteriol 187:5665–5676. doi: 10.1128/JB.187.16.5665-5676.2005 PubMed DOI PMC
Ahuja U, Shokeen B, Cheng N, Cho Y, Blum C, Coppola G, Miller JF. 2016. Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-σ factor. Proc Natl Acad Sci USA 113:2341–2348. doi: 10.1073/pnas.1600320113 PubMed DOI PMC
Kurushima J, Kuwae A, Abe A. 2012. The type III secreted protein BspR regulates the virulence genes in Bordetella bronchiseptica. PLoS ONE 7:e38925. doi: 10.1371/journal.pone.0038925 PubMed DOI PMC
Gutierrez M de la P, Wong TY, Damron FH, Fernández J, Sisti F. 2022. Cyclic di-GMP regulates the type III secretion system and virulence in Bordetella bronchiseptica. Infect Immun 90:e0010722. doi: 10.1128/iai.00107-22 PubMed DOI PMC
Notti RQ, Stebbins CE. 2016. The structure and function of type III secretion systems. Microbiol Spectr 4. doi: 10.1128/microbiolspec.VMBF-0004-2015 PubMed DOI PMC
Bibova I, Hot D, Keidel K, Amman F, Slupek S, Cerny O, Gross R, Vecerek B. 2015. Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for Type III secretion system functionality. RNA Biol 12:175–185. doi: 10.1080/15476286.2015.1017237 PubMed DOI PMC
Gestal MC, Rivera I, Howard LK, Dewan KK, Soumana IH, Dedloff M, Nicholson TL, Linz B, Harvill ET. 2018. Blood or serum exposure induce global transcriptional changes, altered antigenic profile, and increased cytotoxicity by classical bordetellae. Front Microbiol 9:1969. doi: 10.3389/fmicb.2018.01969 PubMed DOI PMC
Gaillard ME, Bottero D, Castuma CE, Basile LA, Hozbor D. 2011. Laboratory adaptation of Bordetella pertussis is associated with the loss of type three secretion system functionality. Infect Immun 79:3677–3682. doi: 10.1128/IAI.00136-11 PubMed DOI PMC
Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. 2016. Type three secretion system in attaching and effacing pathogens. Front Cell Infect Microbiol 6:129. doi: 10.3389/fcimb.2016.00129 PubMed DOI PMC
Yuk MH, Harvill ET, Miller JF. 1998. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol 28:945–959. doi: 10.1046/j.1365-2958.1998.00850.x PubMed DOI
Moon K, Bonocora RP, Kim DD, Chen Q, Wade JT, Stibitz S, Hinton DM. 2017. The BvgAS regulon of Bordetella pertussis. MBio 8 PubMed PMC
Yeung T, Terebiznik M, Yu L, Silvius J, Abidi WM, Philips M, Levine T, Kapus A, Grinstein S. 2006. Receptor activation alters inner surface potential during phagocytosis. Science 313:347–351. doi: 10.1126/science.1129551 PubMed DOI
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA III, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. doi: 10.1038/nmeth.1318 PubMed DOI
Subach OM, Cranfill PJ, Davidson MW, Verkhusha VV. 2011. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One 6:e28674. doi: 10.1371/journal.pone.0028674 PubMed DOI PMC
Meisner J, Goldberg JB. 2016. The Escherichia coli rhaSR-PrhaBAD inducible promoter system allows tightly controlled gene expression over a wide range in Pseudomonas aeruginosa. Appl Environ Microbiol 82:6715–6727. doi: 10.1128/AEM.02041-16 PubMed DOI PMC
Bayram J, Malcova I, Sinkovec L, Holubova J, Streparola G, Jurnecka D, Kucera J, Sedlacek R, Sebo P, Kamanova J. 2020. Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue. PLoS Pathog 16:e1008512. doi: 10.1371/journal.ppat.1008512 PubMed DOI PMC
Stringer C, Wang T, Michaelos M, Pachitariu M. 2021. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 18:100–106. doi: 10.1038/s41592-020-01018-x PubMed DOI
Legland D, Arganda-Carreras I, Andrey P. 2016. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32:3532–3534. doi: 10.1093/bioinformatics/btw413 PubMed DOI
Brocher J. 2023. Biovoxxel/BioVoxxel-Toolbox: BioVoxxel Toolbox v2.6.0. Zenodo.
Lord SJ, Velle KB, Mullins RD, Fritz-Laylin LK. 2020. SuperPlots: communicating reproducibility and variability in cell biology. J Cell Biol 219:e202001064. doi: 10.1083/jcb.202001064 PubMed DOI PMC