Movement behaviour typologies and their associations with adiposity indicators in children and adolescents: a latent profile analysis of 24-h compositional data
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
IGA_FTK_2023_001
Univerzita Palackého v Olomouci
22-02392S
Grantová Agentura České Republiky
18-09188S
Grantová Agentura České Republiky
18-09188S
Grantová Agentura České Republiky
DE220100847
Australian Research Council
PubMed
38858675
PubMed Central
PMC11163703
DOI
10.1186/s12889-024-19075-8
PII: 10.1186/s12889-024-19075-8
Knihovny.cz E-zdroje
- Klíčová slova
- Clusters, Obesity, Physical activity, Profiles, Sedentary behaviour, Sleep, Youth,
- MeSH
- adipozita * fyziologie MeSH
- akcelerometrie MeSH
- cvičení * MeSH
- dítě MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- mladiství MeSH
- obezita dětí a dospívajících * epidemiologie MeSH
- průřezové studie MeSH
- sedavý životní styl * MeSH
- spánek fyziologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
OBJECTIVES: Growing evidence supports the important role of 24-hour movement behaviours (MB) in preventing childhood obesity. However, research to understand the heterogeneity and variability of MB among individuals and what kind of typologies of individuals are at risk of developing obesity is lacking. To bridge this gap, this study identified typologies of 24-hour MB in children and adolescents and investigated their associations with adiposity indicators. METHODS: In this cross-sectional study, 374 children and 317 adolescents from the Czech Republic wore wrist-worn accelerometers for seven consecutive days. Time spent in moderate-to-vigorous physical activity (MVPA), light physical activity (LPA), sedentary behaviour (SB), and sleep was quantified using raw accelerometery data. Adiposity indicators included body mass index (BMI) z-score, fat mass percentage (FM%), fat mass index (FMI), and visceral adipose tissue (VAT). Bias-adjusted latent profile analysis was used on the 24-hour MB data to identify MB typologies and their associations with adiposity indicators. The models were adjusted for potential confounders. The identified typologies were labelled to reflect the behavioural profiles of bees to aid interpretability for the general public. RESULTS: Two typologies were identified in children: highly active Workers characterised by high levels of MVPA and LPA, and inactive Queens characterised by low levels of MVPA and LPA, high levels of SB and longer sleep duration compared to Workers. In adolescents, an additional typology labelled as Drones was characterised by median levels of MVPA, LPA, SB and longest sleep duration. After controlling for covariates, we found that children labelled as Queens were associated with 1.38 times higher FM%, 1.43 times higher FMI, and 1.67 times higher VAT than Workers. In adolescents, Drones had 1.14 times higher FM% and Queens had 1.36 higher VAT in comparison with Workers, respectively. CONCLUSION: Our study highlights the importance of promoting active lifestyles in children and adolescents to potentially reduce adiposity. These findings can provide insights for interventions aimed at promoting healthy MB and preventing childhood obesity.
Zobrazit více v PubMed
Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of Disease Study 2010. Lancet. 2012;380:2224–60. doi: 10.1016/S0140-6736(12)61766-8. PubMed DOI PMC
Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, de Gonzalez AB, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776–86. doi: 10.1016/S0140-6736(16)30175-1. PubMed DOI PMC
Okunogbe A, Nugent R, Spencer G, Powis J, Ralston J, Wilding J. Economic impacts of overweight and obesity: current and future estimates for 161 countries. BMJ Glob Health. 2022;7:e009773. doi: 10.1136/bmjgh-2022-009773. PubMed DOI PMC
Garrido-Miguel M, Cavero-Redondo I, Álvarez-Bueno C, Rodríguez-Artalejo F, Moreno LA, Ruiz JR, et al. Prevalence and trends of overweight and obesity in European Children from 1999 to 2016: a systematic review and Meta-analysis. JAMA Pediatr. 2019;173:e192430–192430. doi: 10.1001/jamapediatrics.2019.2430. PubMed DOI PMC
Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627–42. doi: 10.1016/S0140-6736(17)32129-3. PubMed DOI PMC
World Obesity Federation. World Obesity Atlas 2023. 2023.
Salam RA, Padhani ZA, Das JK, Shaikh AY, Hoodbhoy Z, Jeelani SM, et al. Effects of Lifestyle Modification interventions to prevent and manage child and adolescent obesity: a systematic review and Meta-analysis. Nutrients. 2020;12:2208. doi: 10.3390/nu12082208. PubMed DOI PMC
Chaput J-P, Saunders TJ, Carson V. Interactions between sleep, movement and other non-movement behaviours in the pathogenesis of childhood obesity. Obes Rev. 2017;18:7–14. doi: 10.1111/obr.12508. PubMed DOI
Dumuid D, Stanford TE, Pedišić Ž, Maher C, Lewis LK, Martín-Fernández J-A, et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: a compositional data analysis approach. BMC Public Health. 2018;18:311. doi: 10.1186/s12889-018-5207-1. PubMed DOI PMC
Barnett TA, Kelly AS, Young DR, Perry CK, Pratt CA, Edwards NM et al. Sedentary behaviors in today’s youth: approaches to the Prevention and Management of Childhood Obesity: a Scientific Statement from the American Heart Association. Circulation. 2018;138. PubMed
Marques A, Ramirez-Campillo R, Gouveia ÉR, Ferrari G, Tesler R, Marconcin P, et al. 24-h Movement guidelines and overweight and obesity indicators in toddlers, children and adolescents: a systematic review and Meta-analysis. Sports Med Open. 2023;9:30. doi: 10.1186/s40798-023-00569-5. PubMed DOI PMC
Hallal PC, Victora CG, Azevedo MR, Wells JCK. Adolescent physical activity and health: a systematic review. Sports Med. 2006;36:1019–30. doi: 10.2165/00007256-200636120-00003. PubMed DOI
Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput J-P, Janssen I, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41:S197–239. doi: 10.1139/apnm-2015-0663. PubMed DOI
Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput J-P, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41:S240–65. doi: 10.1139/apnm-2015-0630. PubMed DOI
Cliff DP, Hesketh KD, Vella SA, Hinkley T, Tsiros MD, Ridgers ND, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17:330–44. doi: 10.1111/obr.12371. PubMed DOI
Dutil C, Podinic I, Sadler CM, da Costa BG, Janssen I, Ross-White A, et al. Sleep timing and health indicators in children and adolescents: a systematic review. Health Promot Chronic Dis Prev Can. 2022;42:150–69. doi: 10.24095/hpcdp.42.4.04. PubMed DOI PMC
Li L, Zhang S, Huang Y, Chen K. Sleep duration and obesity in children: a systematic review and meta-analysis of prospective cohort studies. J Paediatr Child Health. 2017;53:378–85. doi: 10.1111/jpc.13434. PubMed DOI
Morrissey B, Taveras E, Allender S, Strugnell C. Sleep and obesity among children: a systematic review of multiple sleep dimensions. Pediatr Obes. 2020;15:e12619. doi: 10.1111/ijpo.12619. PubMed DOI PMC
Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. National Sleep Foundation’s updated sleep duration recommendations: final report. Sleep Health. 2015;1:233–43. doi: 10.1016/j.sleh.2015.10.004. PubMed DOI
Dumuid D, Pedišić Ž, Palarea-Albaladejo J, Martín-Fernández JA, Hron K, Olds T. Compositional data analysis in time-use epidemiology: what, why, how. Int J Environ Res Public Health. 2020;17. PubMed PMC
Bergman LR, Trost K. The person-oriented Versus the variable-oriented Approach: are they complementary, opposites, or exploring different worlds? Merrill Palmer Q. 2006;52:601–32. doi: 10.1353/mpq.2006.0023. DOI
Sánchez-Oliva D, Leech RM, Grao-Cruces A, Esteban-Cornejo I, Padilla-Moledo C, Veiga OL, et al. Does modality matter? A latent profile and transition analysis of sedentary behaviours among school-aged youth: the UP&DOWN study. J Sports Sci. 2020;38:1062–9. doi: 10.1080/02640414.2020.1741252. PubMed DOI
Jago R, Salway R, Lawlor DA, Emm-Collison L, Heron J, Thompson JL, et al. Profiles of children’s physical activity and sedentary behaviour between age 6 and 9: a latent profile and transition analysis. Int J Behav Nutr Phys Act. 2018;15:103. doi: 10.1186/s12966-018-0735-8. PubMed DOI PMC
Gupta N, Hallman DM, Dumuid D, Vij A, Rasmussen CL, Jørgensen MB, et al. Movement behavior profiles and obesity: a latent profile analysis of 24-h time-use composition among Danish workers. Int J Obes. 2020;44:409–17. doi: 10.1038/s41366-019-0419-8. PubMed DOI PMC
Padmapriya N, Chen B, Goh CMJL, Shek LPC, Chong YS, Tan KH, et al. 24-hour movement behaviour profiles and their transition in children aged 5.5 and 8 years – findings from a prospective cohort study. Int J Behav Nutr Phys Act. 2021;18:145. doi: 10.1186/s12966-021-01210-y. PubMed DOI PMC
Pedisic Z. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research—the focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology. 2014;46:135–46.
Clevenger KA, Pfeiffer KA, Montoye AHK. Cross-generational comparability of hip- and wrist-worn ActiGraph GT3X+, wGT3X-BT, and GT9X accelerometers during free-living in adults. J Sports Sci. 2020;38:2794–802. doi: 10.1080/02640414.2020.1801320. PubMed DOI
Clevenger KA, Pfeiffer KA, Montoye AHK. Cross-generational comparability of raw and count-based Metrics from ActiGraph GT9X and wGT3X-BT Accelerometers during Free-Living in Youth. Meas Phys Educ Exerc Sci. 2020;24:194–204. doi: 10.1080/1091367X.2020.1773827. PubMed DOI
Ryan N, Borg D, Fowler P, Osborne J, Stewart I, Pavey T, et al. Inter-device reliability of a wrist actigraph device in classifying sleep characteristics. J Sci Med Sport. 2019;22:S106. doi: 10.1016/j.jsams.2019.08.142. DOI
Crouter SE, Flynn JI, Bassett DR. Estimating physical activity in Youth using a wrist accelerometer. Med Sci Sports Exerc. 2015;47:944–51. doi: 10.1249/MSS.0000000000000502. PubMed DOI PMC
Migueles JH, Rowlands Av, Huber F, Sabia S, van Hees VT. GGIR: a research community–driven open source r package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. J Meas Phys Behav. 2019;2:188–96. doi: 10.1123/jmpb.2018-0063. DOI
van Hees VT, Gorzelniak L, Dean León EC, Eder M, Pias M, Taherian S et al. Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. Müller M, editor. PLoS One. 2013;8:e61691. PubMed PMC
Hildebrand M, Hansen BH, van Hees VT, Ekelund U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand J Med Sci Sports. 2017;27:1814–23. doi: 10.1111/sms.12795. PubMed DOI
Hildebrand M, van Hees VT, Hansen BH, Ekelund U. Age Group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med Sci Sports Exerc. 2014;46:1816–24. doi: 10.1249/MSS.0000000000000289. PubMed DOI
van Hees VT, Sabia S, Jones SE, Wood AR, Anderson KN, Kivimäki M, et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci Rep. 2018;8:12975. doi: 10.1038/s41598-018-31266-z. PubMed DOI PMC
Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47:1821–45. doi: 10.1007/s40279-017-0716-0. PubMed DOI PMC
de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7. doi: 10.2471/BLT.07.043497. PubMed DOI PMC
Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Jeong JS, et al. Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6–18 years. Pediatr Int. 2009;51:263–8. doi: 10.1111/j.1442-200X.2008.02698.x. PubMed DOI
Raychaudhuri M, Sanyal D. Childhood obesity: determinants, evaluation, and prevention. Indian J Endocrinol Metab. 2012;16:192. doi: 10.4103/2230-8210.104037. PubMed DOI PMC
R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.
Farooq A, Martin A, Janssen X, Wilson MG, Gibson A-M, Hughes A, et al. Longitudinal changes in moderate-to-vigorous-intensity physical activity in children and adolescents: a systematic review and meta-analysis. Obes Rev. 2020;21:e12953. doi: 10.1111/obr.12953. PubMed DOI PMC
Janssen X, Mann KD, Basterfield L, Parkinson KN, Pearce MS, Reilly JK, et al. Development of sedentary behavior across childhood and adolescence: longitudinal analysis of the Gateshead Millennium Study. Int J Behav Nutr Phys Act. 2016;13:88. doi: 10.1186/s12966-016-0413-7. PubMed DOI PMC
Wheaton AG, Claussen AH. Short Sleep Duration among infants, children, and adolescents aged 4 Months–17 years — United States, 2016–2018. MMWR Morb Mortal Wkly Rep. 2021;70:1315–21. doi: 10.15585/mmwr.mm7038a1. PubMed DOI PMC
van den Boogaart KG, Tolosana-Delgado R. Compositions: a unified R package to analyze compositional data. Comput Geosci. 2008;34:320–38. doi: 10.1016/j.cageo.2006.11.017. DOI
Filzmoser P, Hron K, Reimann C. Interpretation of multivariate outliers for compositional data. Comput Geosci. 2012;39:77–85. doi: 10.1016/j.cageo.2011.06.014. DOI
Spurk D, Hirschi A, Wang M, Valero D, Kauffeld S. Latent profile analysis: a review and how to guide of its application within vocational behavior research. J Vocat Behav. 2020;120:103445. doi: 10.1016/j.jvb.2020.103445. DOI
Lo Y, Mendell NR, Rubin DB. Testing the number of components in a normal mixture. Biometrika. 2001;88:767–78. doi: 10.1093/biomet/88.3.767. DOI
Lubke G, Neale MC. Distinguishing between latent classes and continuous factors: resolution by Maximum Likelihood? Multivar Behav Res. 2006;41:499–532. doi: 10.1207/s15327906mbr4104_4. PubMed DOI
Weller BE, Bowen NK, Faubert SJ. Latent class analysis: a guide to best practice. J Black Psychol. 2020;46:287–311. doi: 10.1177/0095798420930932. DOI
Vermunt JK. Latent class modeling with covariates: two Improved three-step approaches. Polit Anal. 2017;18:450–69. doi: 10.1093/pan/mpq025. DOI
Bakk Z, Kuha J. Relating latent class membership to external variables: an overview. Br J Math Stat Psychol. 2021;74:340–62. doi: 10.1111/bmsp.12227. PubMed DOI PMC
Fairclough SJ, Dumuid D, Taylor S, Curry W, McGrane B, Stratton G, et al. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: an analysis of compositional data. Int J Behav Nutr Phys Act. 2017;14:64. doi: 10.1186/s12966-017-0521-z. PubMed DOI PMC
Roman-Viñas B, Chaput J-P, Katzmarzyk PT, Fogelholm M, Lambert EV, Maher C, et al. Proportion of children meeting recommendations for 24-hour movement guidelines and associations with adiposity in a 12-country study. Int J Behav Nutr Phys Act. 2016;13:123. doi: 10.1186/s12966-016-0449-8. PubMed DOI PMC
Vanderwall C, Randall Clark R, Eickhoff J, Carrel AL. BMI is a poor predictor of adiposity in young overweight and obese children. BMC Pediatr. 2017;17:135. doi: 10.1186/s12887-017-0891-z. PubMed DOI PMC
Adab P, Pallan M, Whincup PH. Is BMI the best measure of obesity? BMJ. 2018;360:27–9. PubMed
Neufeld LM, Andrade EB, Ballonoff Suleiman A, Barker M, Beal T, Blum LS, et al. Food choice in transition: adolescent autonomy, agency, and the food environment. Lancet. 2022;399:185–97. doi: 10.1016/S0140-6736(21)01687-1. PubMed DOI
Kumanyika SK. Environmental influences on childhood obesity: ethnic and cultural influences in context. Physiol Behav. 2008;94:61–70. doi: 10.1016/j.physbeh.2007.11.019. PubMed DOI
Loos RJF. The genetics of adiposity. Curr Opin Genet Dev. 2018;50:86–95. doi: 10.1016/j.gde.2018.02.009. PubMed DOI PMC
Sluggett L, Wagner SL, Harris RL. Sleep duration and obesity in children and adolescents. Can J Diabetes. 2019;43:146–52. doi: 10.1016/j.jcjd.2018.06.006. PubMed DOI
Sampasa-Kanyinga H, Hamilton HA, Chaput J-P. Sleep duration and consumption of sugar-sweetened beverages and energy drinks among adolescents. Nutrition. 2018;48:77–81. doi: 10.1016/j.nut.2017.11.013. PubMed DOI
Hayes JF, Balantekin KN, Altman M, Wilfley DE, Taylor CB, Williams J. Sleep patterns and Quality are Associated with severity of obesity and weight-related behaviors in adolescents with overweight and obesity. Child Obes. 2017;14:11–7. doi: 10.1089/chi.2017.0148. PubMed DOI PMC
Chaput J-P, Tremblay MS, Katzmarzyk PT, Fogelholm M, Hu G, Maher C, et al. Sleep patterns and sugar-sweetened beverage consumption among children from around the world. Public Health Nutr. 2018;21:2385–93. doi: 10.1017/S1368980018000976. PubMed DOI PMC
Magriplis E, Michas G, Petridi E, Chrousos GP, Roma E, Benetou V et al. Dietary Sugar Intake and Its Association with obesity in children and adolescents. Children. 2021;8. PubMed PMC
Brown DMY, Cairney J, Kwan MY. Adolescent movement behaviour profiles are associated with indicators of mental wellbeing. Ment Health Phys Act. 2021;20:100387. doi: 10.1016/j.mhpa.2021.100387. DOI
Chaput J-P, Carson V, Gray C, Tremblay M. Importance of all Movement Behaviors in a 24 Hour Period for Overall Health. Int J Environ Res Public Health. 2014;11:12575–81. doi: 10.3390/ijerph111212575. PubMed DOI PMC
Parker KE, Salmon J, Costigan SA, Villanueva K, Brown HL, Timperio A. Activity-related behavior typologies in youth: a systematic review. Int J Behav Nutr Phys Act. 2019;16:44. doi: 10.1186/s12966-019-0804-7. PubMed DOI PMC
de Mello GT, Bertuol C, Minatto G, Barbosa Filho VC, Oldenburg B, Leech RM, et al. A systematic review of the clustering and correlates of physical activity and sedentary behavior among boys and girls. BMC Public Health. 2023;23:372. doi: 10.1186/s12889-022-14869-0. PubMed DOI PMC
Stevens ML, Gupta N, Eroglu EI, Crowley PJ, Eroglu B, Bauman A et al. Thigh-worn accelerometry for measuring movement and posture across the 24-hour cycle: a scoping review and expert statement. BMJ Open Sport; Exercise Medicine. 2020;6:e000874. PubMed PMC