Bordetella adenylate cyclase toxin elicits chromatin remodeling and transcriptional reprogramming that blocks differentiation of monocytes into macrophages

. 2025 Apr 09 ; 16 (4) : e0013825. [epub] 20250319

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40105369

Grantová podpora
19-27630X Czech Science Foundation
LX22NPO5103 European Union - Next Generation EU
LM2023053 Ministry of Education, Youth and Sports of the Czech Republic
LM2023055 ELIXIR CZ
CZ.02.01.01/00/22_008/0004597 Talking microbes - understanding microbial interaction within One Health framework

Bordetella pertussis infects human upper airways and deploys an array of immunosuppressive virulence factors, among which the adenylate cyclase toxin (CyaA) plays a prominent role in disarming host phagocytes. CyaA binds the complement receptor-3 (CR3 aka αMβ2 integrin CD11b/CD18 or Mac-1) of myeloid cells and delivers into their cytosol an adenylyl cyclase enzyme that hijacks cellular signaling through unregulated conversion of cytosolic ATP to cAMP. We found that the action of as little CyaA as 22 pM (4 ng/mL) blocks macrophage colony-stimulating factor (M-CSF)-driven transition of migratory human CD14+ monocytes into macrophages. Global transcriptional profiling (RNAseq) revealed that exposure of monocytes to 22 pM CyaA for 40 hours in culture with 20 ng/mL of M-CSF led to upregulation of genes that exert negative control of monocyte to macrophage differentiation (e.g., SERPINB2, DLL1, and CSNK1E). The sustained CyaA action yielded downregulation of numerous genes involved in processes crucial for host defense, such as myeloid cell differentiation, chemotaxis of inflammatory cells, antigen presentation, phagocytosis, and bactericidal activities. CyaA-elicited signaling also promoted deacetylation and trimethylation of lysines 9 and 27 of histone 3 (H3K9me3 and H3K27me3) and triggered the formation of transcriptionally repressive heterochromatin patches in the nuclei of CyaA-exposed monocytes. These effects were partly reversed by the G9a methyltransferase inhibitor UNC 0631 and by the pleiotropic HDAC inhibitor Trichostatin-A, revealing that CyaA-elicited epigenetic alterations mediate transcriptional reprogramming of monocytes and play a role in CyaA-triggered block of monocyte differentiation into bactericidal macrophage cells.IMPORTANCETo proliferate on host airway mucosa and evade elimination by patrolling sentinel cells, the whooping cough agent Bordetella pertussis produces a potently immunosubversive adenylate cyclase toxin (CyaA) that blocks opsonophagocytic killing of bacteria by phagocytes like neutrophils and macrophages. Indeed, chemotactic migration of CD14+ monocytes to the infection site and their transition into bactericidal macrophages, thus replenishing the exhausted mucosa-patrolling macrophages, represents one of the key mechanisms of innate immune defense to infection. We show that the cAMP signaling action of CyaA already at a very low toxin concentration triggers massive transcriptional reprogramming of monocytes that is accompanied by chromatin remodeling and epigenetic histone modifications, which block the transition of migratory monocytes into bactericidal macrophage cells. This reveals a novel layer of toxin action-mediated hijacking of functional differentiation of innate immune cells for the sake of mucosal pathogen proliferation and transmission to new hosts.

Zobrazit více v PubMed

Mattoo S, Cherry JD. 2005. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382. doi:10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC

Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. 2021. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 12:2608–2632. doi:10.1080/21505594.2021.1980987 PubMed DOI PMC

Melvin JA, Scheller EV, Miller JF, Cotter PA. 2014. Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol 12:274–288. doi:10.1038/nrmicro3235 PubMed DOI PMC

Carbonetti NH. 2016. Pertussis leukocytosis: mechanisms, clinical relevance and treatment. Pathog Dis 74:ftw087. doi:10.1093/femspd/ftw087 PubMed DOI PMC

Carbonetti NH. 2015. Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathog Dis 73:ftv073. doi:10.1093/femspd/ftv073 PubMed DOI PMC

Ahmad JN, Sebo P. 2021. Bacterial RTX toxins and host immunity. Curr Opin Infect Dis 34:187–196. doi:10.1097/QCO.0000000000000726 PubMed DOI

Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. 2010. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34:1076–1112. doi:10.1111/j.1574-6976.2010.00231.x PubMed DOI PMC

Fedele G, Schiavoni I, Adkins I, Klimova N, Sebo P. 2017. Invasion of dendritic cells, macrophages and neutrophils by the Bordetella adenylate cyclase toxin: a subversive move to fool host immunity. Toxins (Basel) 9:293. doi:10.3390/toxins9100293 PubMed DOI PMC

Novak J, Cerny O, Osickova A, Linhartova I, Masin J, Bumba L, Sebo P, Osicka R. 2017. Structure–function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins (Basel) 9:300. doi:10.3390/toxins9100300 PubMed DOI PMC

Cerny O, Anderson KE, Stephens LR, Hawkins PT, Sebo P. 2017. cAMP signaling of adenylate cyclase toxin blocks the oxidative burst of neutrophils through epac-mediated inhibition of phospholipase C activity. J Immunol 198:1285–1296. doi:10.4049/jimmunol.1601309 PubMed DOI

Eby JC, Gray MC, Hewlett EL. 2014. Cyclic AMP-mediated suppression of neutrophil extracellular trap formation and apoptosis by the Bordetella pertussis adenylate cyclase toxin. Infect Immun 82:5256–5269. doi:10.1128/IAI.02487-14 PubMed DOI PMC

Kamanova J, Kofronova O, Masin J, Genth H, Vojtova J, Linhartova I, Benada O, Just I, Sebo P. 2008. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J Immunol 181:5587–5597. doi:10.4049/jimmunol.181.8.5587 PubMed DOI

Ahmad JN, Cerny O, Linhartova I, Masin J, Osicka R, Sebo P. 2016. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell Microbiol 18:384–398. doi:10.1111/cmi.12519 PubMed DOI

Gordon S, Taylor PR. 2005. Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964. doi:10.1038/nri1733 PubMed DOI

Ahmad JN, Holubova J, Benada O, Kofronova O, Stehlik L, Vasakova M, Sebo P. 2019. Bordetella adenylate cyclase toxin inhibits monocyte-to-macrophage transition and dedifferentiates human alveolar macrophages into monocyte-like cells. mBio 10:e01743-19. doi:10.1128/mBio.01743-19 PubMed DOI PMC

Ahmad JN, Sebo P. 2020. Adenylate cyclase toxin tinkering with monocyte-macrophage differentiation. Front Immunol 11:2181. doi:10.3389/fimmu.2020.02181 PubMed DOI PMC

Osicka R, Osicková A, Basar T, Guermonprez P, Rojas M, Leclerc C, Sebo P. 2000. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect Immun 68:247–256. doi:10.1128/IAI.68.1.247-256.2000 PubMed DOI PMC

Sander J, Schmidt SV, Cirovic B, McGovern N, Papantonopoulou O, Hardt A-L, Aschenbrenner AC, Kreer C, Quast T, Xu AM, et al. . 2017. Cellular differentiation of human monocytes is regulated by time-dependent interleukin-4 signaling and the transcriptional regulator NCOR2. Immunity 47:1051–1066. doi:10.1016/j.immuni.2017.11.024 PubMed DOI PMC

Caunt CJ, Keyse SM. 2013. Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J 280:489–504. doi:10.1111/j.1742-4658.2012.08716.x PubMed DOI PMC

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. 2021. clusterprofiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2:100141. doi:10.1016/j.xinn.2021.100141 PubMed DOI PMC

Luster AD, Unkeless JC, Ravetch JV. 1985. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315:672–676. doi:10.1038/315672a0 PubMed DOI

McCowan J, Fercoq F, Kirkwood PM, T’Jonck W, Hegarty LM, Mawer CM, Cunningham R, Mirchandani AS, Hoy A, Humphries DC, Jones G-R, Hansen CG, Hirani N, Jenkins SJ, Henri S, Malissen B, Walmsley SR, Dockrell DH, Saunders PTK, Carlin LM, Bain CC. 2021. The transcription factor EGR2 is indispensable for tissue-specific imprinting of alveolar macrophages in health and tissue repair. Sci Immunol 6:eabj2132. doi:10.1126/sciimmunol.abj2132 PubMed DOI PMC

Pham TH, Benner C, Lichtinger M, Schwarzfischer L, Hu Y, Andreesen R, Chen W, Rehli M. 2012. Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood 119:e161–71. doi:10.1182/blood-2012-01-402453 PubMed DOI

Nakamura T, Datta R, Kharbanda S, Kufe D. 1991. Regulation of jun and fos gene expression in human monocytes by the macrophage colony-stimulating factor. Cell Growth Differ 2:267–272. PubMed

Yu H, Maurer F, Medcalf RL. 2002. Plasminogen activator inhibitor type 2: a regulator of monocyte proliferation and differentiation. Blood 99:2810–2818. doi:10.1182/blood.v99.8.2810 PubMed DOI

Okamura A, Iwata N, Nagata A, Tamekane A, Shimoyama M, Gomyo H, Yakushijin K, Urahama N, Hamaguchi M, Fukui C, Chihara K, Ito M, Matsui T. 2004. Involvement of casein kinase Iepsilon in cytokine-induced granulocytic differentiation. Blood 103:2997–3004. doi:10.1182/blood-2003-08-2768 PubMed DOI

Wynn TA. 2015. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol 15:271–282. doi:10.1038/nri3831 PubMed DOI

Uchida H, Kondo A, Yoshimura Y, Mazaki Y, Sabe H. 2001. PAG3/Papalpha/KIAA0400, a GTPase-activating protein for ADP-ribosylation factor (ARF), regulates ARF6 in Fcgamma receptor-mediated phagocytosis of macrophages. J Exp Med 193:955–966. doi:10.1084/jem.193.8.955 PubMed DOI PMC

Nagaraju K, Rawat R, Veszelovszky E, Thapliyal R, Kesari A, Sparks S, Raben N, Plotz P, Hoffman EP. 2008. Dysferlin deficiency enhances monocyte phagocytosis: a model for the inflammatory onset of limb-girdle muscular dystrophy 2B. Am J Pathol 172:774–785. doi:10.2353/ajpath.2008.070327 PubMed DOI PMC

Foley JH, Walton BL, Aleman MM, O’Byrne AM, Lei V, Harrasser M, Foley KA, Wolberg AS, Conway EM. 2016. Complement activation in arterial and venous thrombosis is mediated by plasmin. EBioMedicine 5:175–182. doi:10.1016/j.ebiom.2016.02.011 PubMed DOI PMC

Lomax KJ, Leto TL, Nunoi H, Gallin JI, Malech HL. 1989. Recombinant 47-kilodalton cytosol factor restores NADPH oxidase in chronic granulomatous disease. Science 245:409–412. doi:10.1126/science.2547247 PubMed DOI

Volpp BD, Nauseef WM, Donelson JE, Moser DR, Clark RA. 1989. Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci U S A 86:7195–7199. doi:10.1073/pnas.86.18.7195 PubMed DOI PMC

Cutter DiPiazza AR, Taneja N, Dhakshnamoorthy J, Wheeler D, Holla S, Grewal SIS. 2021. Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation. Proc Natl Acad Sci USA 118:e2100699118. doi:10.1073/pnas.2100699118 PubMed DOI PMC

Al-Sady B, Madhani HD, Narlikar GJ. 2013. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Mol Cell 51:80–91. doi:10.1016/j.molcel.2013.06.013 PubMed DOI PMC

Zhang K, Mosch K, Fischle W, Grewal SIS. 2008. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol 15:381–388. doi:10.1038/nsmb.1406 PubMed DOI

Canzio D, Chang EY, Shankar S, Kuchenbecker KM, Simon MD, Madhani HD, Narlikar GJ, Al-Sady B. 2011. Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol Cell 41:67–81. doi:10.1016/j.molcel.2010.12.016 PubMed DOI PMC

Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, Sabo PJ, Larschan E, Gorchakov AA, Gu T. 2011. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471:480–485. doi:10.1038/nature09725 PubMed DOI PMC

Bailey LT, Northall SJ, Schalch T. 2021. Breakers and amplifiers in chromatin circuitry: acetylation and ubiquitination control the heterochromatin machinery. Curr Opin Struct Biol 71:156–163. doi:10.1016/j.sbi.2021.06.012 PubMed DOI PMC

Montavon T, Shukeir N, Erikson G, Engist B, Onishi-Seebacher M, Ryan D, Musa Y, Mittler G, Meyer AG, Genoud C, Jenuwein T. 2021. Complete loss of H3K9 methylation dissolves mouse heterochromatin organization. Nat Commun 12:4359. doi:10.1038/s41467-021-24532-8 PubMed DOI PMC

Noma KAllis CD, Grewal SI. 2001. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:1150–1155. doi:10.1126/science.1064150 PubMed DOI

Kurdistani SK, Tavazoie S, Grunstein M. 2004. Mapping global histone acetylation patterns to gene expression. Cell 117:721–733. doi:10.1016/j.cell.2004.05.023 PubMed DOI

Wiles ET, Selker EU. 2017. H3K27 methylation: a promiscuous repressive chromatin mark. Curr Opin Genet Dev 43:31–37. doi:10.1016/j.gde.2016.11.001 PubMed DOI PMC

Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. 2002. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein. Genes Dev 16:2893–2905. doi:10.1101/gad.1035902 PubMed DOI PMC

Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltus GA, Kadam S, Zhai H, Valdez R, Gonzalo S, Zhang Y, Li E, Chen T. 2008. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4:e1000190. doi:10.1371/journal.pgen.1000190 PubMed DOI PMC

Wu H, Chen X, Xiong J, Li Y, Li H, Ding X, Liu S, Chen S, Gao S, Zhu B. 2011. Histone methyltransferase G9a contributes to H3K27 methylation in vivo. Cell Res 21:365–367. doi:10.1038/cr.2010.157 PubMed DOI PMC

Shinkai Y, Tachibana M. 2011. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 25:781–788. doi:10.1101/gad.2027411 PubMed DOI PMC

Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y. 2005. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19:815–826. doi:10.1101/gad.1284005 PubMed DOI PMC

Hume DA. 2008. Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol 1:432–441. doi:10.1038/mi.2008.36 PubMed DOI

Jakubzick CV, Randolph GJ, Henson PM. 2017. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol 17:349–362. doi:10.1038/nri.2017.28 PubMed DOI

Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. 2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113. doi:10.1126/science.1060118 PubMed DOI

Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher AG, Pombo A. 2007. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9:1428–1435. doi:10.1038/ncb1663 PubMed DOI

Rivera C, Gurard-Levin ZA, Almouzni G, Loyola A. 2014. Histone lysine methylation and chromatin replication. Biochim Biophys Acta 1839:1433–1439. doi:10.1016/j.bbagrm.2014.03.009 PubMed DOI

Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP, Imhof A, Nakatani Y, Dent SYR, Almouzni G. 2009. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 10:769–775. doi:10.1038/embor.2009.90 PubMed DOI PMC

Nicetto D, Zaret KS. 2019. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr Opin Genet Dev 55:1–10. doi:10.1016/j.gde.2019.04.013 PubMed DOI PMC

Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H, Schmitz G. 2010. Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci USA 107:7817–7822. doi:10.1073/pnas.0912059107 PubMed DOI PMC

Zeng L, Li T, Xu DC, Liu J, Mao G, Cui MZ, Fu X, Xu X. 2012. Death receptor 6 induces apoptosis not through type I or type II pathways, but via a unique mitochondria-dependent pathway by interacting with Bax protein. J Biol Chem 287:29125–29133. doi:10.1074/jbc.M112.362038 PubMed DOI PMC

Minakawa T, Kanki Y, Nakamura K, Yamashita JK. 2020. Protein kinase A accelerates the rate of early stage differentiation of pluripotent stem cells. Biochem Biophys Res Commun 524:57–63. doi:10.1016/j.bbrc.2019.12.098 PubMed DOI

Ha CH, Kim JY, Zhao J, Wang W, Jhun BS, Wong C, Jin ZG. 2010. PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 107:15467–15472. doi:10.1073/pnas.1000462107 PubMed DOI PMC

Du M, Perry RL, Nowacki NB, Gordon JW, Salma J, Zhao J, Aziz A, Chan J, Siu KW, McDermott JC. 2008. Protein kinase A represses skeletal myogenesis by targeting myocyte enhancer factor 2D. Mol Cell Biol 28:2952–2970. doi:10.1128/MCB.00248-08 PubMed DOI PMC

Novák J, Fabrik I, Linhartová I, Link M, Černý O, Stulík J, Šebo P. 2017. Phosphoproteomics of cAMP signaling of Bordetella adenylate cyclase toxin in mouse dendritic cells. Sci Rep 7:16298. doi:10.1038/s41598-017-14501-x PubMed DOI PMC

Gantt SL, Gattis SG, Fierke CA. 2006. Catalytic activity and inhibition of human histone deacetylase 8 is dependent on the identity of the active site metal ion. Biochemistry 45:6170–6178. doi:10.1021/bi060212u PubMed DOI

Bottomley MJ, Lo Surdo P, Di Giovine P, Cirillo A, Scarpelli R, Ferrigno F, Jones P, Neddermann P, De Francesco R, Steinkühler C, Gallinari P, Carfí A. 2008. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J Biol Chem 283:26694–26704. doi:10.1074/jbc.M803514200 PubMed DOI PMC

Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP. 1999. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–193. doi:10.1038/43710 PubMed DOI

Glozak MA, Sengupta N, Zhang X, Seto E. 2005. Acetylation and deacetylation of non-histone proteins. Gene 363:15–23. doi:10.1016/j.gene.2005.09.010 PubMed DOI

Yao YL, Yang WM, Seto E. 2001. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 21:5979–5991. doi:10.1128/MCB.21.17.5979-5991.2001 PubMed DOI PMC

Cerny O, Kamanova J, Masin J, Bibova I, Skopova K, Sebo P. 2015. Bordetella pertussis adenylate cyclase toxin blocks induction of bactericidal nitric oxide in macrophages through cAMP-dependent activation of the SHP-1 phosphatase. J Immunol 194:4901–4913. doi:10.4049/jimmunol.1402941 PubMed DOI

Zaman G, Sunters A, Galea GL, Javaheri B, Saxon LK, Moustafa A, Armstrong VJ, Price JS, Lanyon LE. 2012. Loading-related regulation of transcription factor EGR2/Krox-20 in bone cells is ERK1/2 protein-mediated and prostaglandin, Wnt signaling pathway-, and insulin-like growth factor-I axis-dependent. J Biol Chem 287:3946–3962. doi:10.1074/jbc.M111.252742 PubMed DOI PMC

Sheng M, McFadden G, Greenberg ME. 1990. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4:571–582. doi:10.1016/0896-6273(90)90115-v PubMed DOI

Gaynor R, Simon K, Koeffler P. 1991. Expression of c-jun during macrophage differentiation of HL-60 cells. Blood 77:2618–2623. PubMed

Shepherd MC, Baillie GS, Stirling DI, Houslay MD. 2004. Remodelling of the PDE4 cAMP phosphodiesterase isoform profile upon monocyte-macrophage differentiation of human U937 cells. Br J Pharmacol 142:339–351. doi:10.1038/sj.bjp.0705770 PubMed DOI PMC

Ahmad JN, Sebo P. 2024. cAMP signaling of Bordetella adenylate cyclase toxin blocks M-CSF triggered upregulation of iron acquisition receptors on differentiating CD14+ monocytes. mSphere 9:e00407-24. doi:10.1128/msphere.00407-24 PubMed DOI PMC

Holubova J, Stanek O, Juhasz A, Hamidou Soumana I, Makovicky P, Sebo P. 2022. The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model. PLoS Pathog 18:e1010402. doi:10.1371/journal.ppat.1010402 PubMed DOI PMC

Franken KL, Hiemstra HS, van Meijgaarden KE, Subronto Y, den Hartigh J, Ottenhoff TH, Drijfhout JW. 2000. Purification of his-tagged proteins by immobilized chelate affinity chromatography: the benefits from the use of organic solvent. Protein Expr Purif 18:95–99. doi:10.1006/prep.1999.1162 PubMed DOI

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017. Nextflow enables reproducible computational workflows. Nat Biotechnol 35:316–319. doi:10.1038/nbt.3820 PubMed DOI

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi:10.1186/s13059-014-0550-8 PubMed DOI PMC

Zhu A, Ibrahim JG, Love MI. 2019. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35:2084–2092. doi:10.1093/bioinformatics/bty895 PubMed DOI PMC

Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. 2021. Fast gene set enrichment analysis. bioRxiv. doi:10.1101/060012:060012 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...