Genome-wide screening reveals the genetic basis of mammalian embryonic eye development
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
U42 OD011175
NIH HHS - United States
UM1 OD023221
NIH HHS - United States
R03 OD032622
NIH HHS - United States
UM1 HG006370
NHGRI NIH HHS - United States
U54 HG006364
NHGRI NIH HHS - United States
U54 HG006370
NHGRI NIH HHS - United States
MC_UP_1502/3
Medical Research Council - United Kingdom
K08 EY027463
NEI NIH HHS - United States
MC_UP_2201/1
Medical Research Council - United Kingdom
MC_U142684172
Medical Research Council - United Kingdom
UM1 HG006348
NHGRI NIH HHS - United States
PubMed
36737727
PubMed Central
PMC9898963
DOI
10.1186/s12915-022-01475-0
PII: 10.1186/s12915-022-01475-0
Knihovny.cz E-zdroje
- Klíčová slova
- CPLANE, Eye development, IMPC, MAC spectrum, Mouse, Serine-glycine biosynthesis,
- MeSH
- abnormality očí * genetika MeSH
- anoftalmie * genetika MeSH
- embryonální vývoj genetika MeSH
- fenotyp MeSH
- kolobom * genetika MeSH
- lidé MeSH
- mikroftalmie * genetika MeSH
- myši knockoutované MeSH
- myši MeSH
- oči MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS: Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS: Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.
CAM SU Genomic Resource Center Soochow University Suzhou China
Centre of Animal Biotechnology and Gene Therapy Universitat Autònoma de Barcelona Barcelona Spain
Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
Department of Surgery School of Medicine University of California Davis Sacramento CA USA
European Bioinformatics Institute Wellcome Genome Campus Hinxton Cambridgeshire UK
Faculty of Health Sciences PCDDP North West University Potchefstroom South Africa
German Mouse Clinic Institute of Experimental Genetics Helmholtz Zentrum München Neuherberg Germany
Indian Institutes of Science Education and Research Pune India
Lunenfeld Tanenbaum Research Institute Sinai Health Toronto ON Canada
Monterotondo Mouse Clinic Italian National Research Council Monterotondo Scalo Italy
Mouse Biology Program University of California Davis Davis CA USA
Nanjing Biomedical Research Institute Nanjing University Nanjing China
National Laboratory Animal Center National Applied Research Laboratories Beijing China
National Laboratory Animal Center National Applied Research Laboratories Taipei City Taiwan
Oakland University William Beaumont School of Medicine Rochester MI USA
Ophthalmic Genetics and Visual Function Branch National Eye Institute NIH Bethesda MD 20892 USA
Phenomics Australia The John Curtin School of Medical Research Canberra Australia
RIKEN BioResource Center Tsukuba Japan
The Centre for Phenogenomics Toronto ON Canada
The Hospital for Sick Children Toronto ON Canada
The Jackson Laboratory Bar Harbor ME USA
The Wellcome Trust Sanger Institute Wellcome Genome Campus Hinxton Cambridge UK
UC Davis Eye Center 4860 Y St Ste 2400 Sacramento CA 95817 USA
Zobrazit více v PubMed
Brown SDM, Moore MW. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm Genome. 2012. 10.1007/s00335-012-9427-x. PubMed PMC
Brown SDM, Moore MW. Towards an encyclopaedia of mammalian gene function: the International Mouse Phenotyping Consortium. Dis Model Mech. 2012. 10.1242/dmm.009878. PubMed PMC
Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK. High-throughput discovery of novel developmental phenotypes. Nature. 2016. 10.1038/nature19356. PubMed PMC
Muñoz-Fuentes V, Haselimashhadi H, Santos L, Westerberg H, Parkinson H, Mason J. Pleiotropy data resource as a primer for investigating co-morbidities/multi-morbidities and their role in disease. Mamm Genome. 2021;33:135–142. PubMed PMC
Graw J. Eye development. Curr Top Dev Biol. 2010;90:343–386. PubMed
Heavner W, Pevny L. Eye development and retinogenesis. Cold Spring Harb Perspect Biol. 2012;4. 10.1101/cshperspect.a008391. PubMed PMC
Kondoh H. Development of the eye. In: Rossant J, Tam, editors. Mouse development. San Diego, CA: Academic Press; 2002. pp. 519–538.
Huang J, Rajagopal R, Liu Y, Dattilo LK, Shaham O, Ashbery-Padan R, et al. The mechanism of lens placode formation: a case of matrix-mediated morphogenesis. Dev Biol. 2011;355:32–42. PubMed PMC
Plaisancie J, Calvas P, Chassaing N. Genetic advances in microphthalmia. J Pediatr Genet. 2016. 10.1055/s-0036-1592350. PubMed PMC
Verma AS, FitzPatrick DR. Anophthalmia and microphthalmia. Orphanet J Rare Dis. 2007. 10.1186/1750-1172-2-47. PubMed PMC
Morrison D, FitzPatrick D, Hanson I, Williamson K, van Heyningen V, Fleck B, et al. National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology. J Med Genet. 2002. 10.1136/jmg.39.1.16. PubMed PMC
Ragge NK, Subak-Sharpe ID, Collin JRO. A practical guide to the management of anophthalmia and microphthalmia. Eye. 2007. 10.1038/sj.eye.6702858. PubMed
Skalicky SE, White AJR, Grigg JR, Martin F, Smith J, Jones M, et al. Microphthalmia, anophthalmia, and coloboma and associated ocular and systemic features: understanding the spectrum. JAMA Ophthalmol. 2013. 10.1001/jamaophthalmol.2013.5305. PubMed
Williamson KA, FitzPatrick DR. The genetic architecture of microphthalmia, anophthalmia and coloboma. Eur J Med Genet. 2014;57(8):369–380. PubMed
Kominami R. Role of the transcription factor Bcl11b in development and lymphomagenesis. Proc Jpn Acad Ser B. 2012;88:72–87. PubMed PMC
Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature. 1991;354:522–525. PubMed
Dyson JM, Conduit SE, Feeney SJ, Hakim S, DiTommaso T, Fulcher AJ. INPP5E regulates phosphoinositide-dependent cilia transition zone function. J Cell Biol. 2016;216:247–263. PubMed PMC
Alldredge A, Fuhrmann S. Loss of axin2 causes ocular defects during mouse eye development. Invest Ophthalmol Vis Sci. 2016;57:5253. PubMed PMC
Wilson R, Geyer SH, Reissig L, Rose J, Szumska D, Hardman E, et al. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice. Wellcome Open Res. 2017;1:1. PubMed PMC
Rosenfeld JA, Ballif BC, Martin DM, et al. Clinical characterization of individuals with deletions of genes in holoprosencephaly pathways by aCGH refines the phenotypic spectrum of HPE. Hum Genet. 2010;127(4):421–440. PubMed
Raible SE, Mehta D, Bettale C, Fiordaliso S, Kaur M, Medne L. Clinical and molecular spectrum of CHOPS syndrome. Am J Med Genet A. 2019;179:1126–1138. PubMed PMC
Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER version 11: expanded annotation data from Gene Ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017. 10.1093/nar/gkw1138. PubMed PMC
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–29. PubMed PMC
Gene Ontology Consortium The Gene Ontology resource: enriching a gold mine. Nucleic Acids Res. 2021;49:D325–D334. PubMed PMC
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000. 10.1093/nar/28.1.27. PubMed PMC
Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007. 10.1093/nar/gkm415. PubMed PMC
Van Dam TJP, Kennedy J, van der Lee R, de Vrieze E, Wunderlich KA, Rix S, et al. Ciliacarta: an integrated and validated compendium of ciliary genes. PLoS One. 2019. 10.1371/journal.pone.0216705. PubMed PMC
Karp NA, Meehan TF, Morgan H, Mason JC, Blake A, Kurbatova N, et al. Applying the ARRIVE guidelines to an in vivo database. PLoS Biol. 2015. 10.1371/journal.pbio.1002151. PubMed PMC
International mouse phenotyping resource of standardised screens. https://www.mousephenotype.org/impress/index. Accessed 24 Oct 2022.
International Mouse Phenotyping Consortium. https://www.mousephenotype.org. Accessed 24 Oct 2022.
Dean L. Methylenetetrahydrofolate reductase deficiency. In: Pratt VM, editor. Medical genetics summaries. Bethesda, MD: National Center for Biotechnology Information (US); 2012. PubMed
Maestro-de-las-Casas C, Pérez-Miguelsanz J, López-Gordillo Y, et al. Maternal folic acid-deficient diet causes congenital malformations in the mouse eye. Birth Defects Res A Clin Mol Teratol. 2013;97:587–596. PubMed
Sijilmassi O. Folic acid deficiency and vision: a review. Graefes Arch Clin Exp Ophthalmol. 2019;257:1573–1580. PubMed
Sijilmassi O, López-Alonso JM, Del Río Sevilla A, Murillo González J, Barrio Asensio MDC. Biometric alterations of mouse embryonic eye structures due to short-term folic acid deficiency. Curr Eye Res. 2019;44:428–435. PubMed
Mullarky E, Lairson LL, Cantley LC, Lyssiotis CA. A novel small-molecule inhibitor of 3-phosphoglycerate dehydrogenase. Mol Cell Oncol. 2016. 10.1080/23723556.2016.1164280. PubMed PMC
Antonov A, Agostini M, Morello M, Minieri M, Melino G, Amelio I. Bioinformatics analysis of the serine and glycine pathway in cancer cells. Oncotarget. 2014. 10.18632/oncotarget.2668. PubMed PMC
Shaheen R, Rahbeeni Z, Alhashem A, Faqeih E, Zhao Q, Xiong Y. Neu-laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am J Hum Genet. 2014. 10.1016/j.ajhg.2014.04.015. PubMed PMC
Winter RM, Donnai D, Crawfurd MD. Syndromes of microcephaly, microphthalmia, cataracts, and joint contractures. J Med Genet. 1981. 10.1136/jmg.18.2.129. PubMed PMC
Turkel SB, Ebbin AJ, Towner JW. Additional manifestations of the neu-LAXOVA syndrome. J Med Genet. 1983;20(3):227–229. PubMed PMC
Leung KY, Pai YJ, Chen Q, Santos C, Calvani E, Sudiwala S, et al. Partitioning of one-carbon units in folate and methionine metabolism is essential for neural tube closure. Cell Rep. 2017. 10.1016/j.celrep.2017.10.072. PubMed PMC
Sinha T, Ikelle L, Naash MI, Al-Ubaidi MR. The intersection of serine metabolism and cellular dysfunction in retinal degeneration. Cells. 2020;9:674. PubMed PMC
Wheway G, Parry DA, Johnson CA. The role of primary cilia in the development and disease of the retina. Organogenesis. 2014;10:69–85. PubMed PMC
Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017;18:533–547. PubMed PMC
Zhou P, Zhou J. The primary cilium as a therapeutic target in ocular diseases. Front Pharmacol. 2020;11:977. PubMed PMC
Martín-Salazar JE, Valverde D. CPLANE complex and ciliopathies. Biomolecules. 2022;12:847. PubMed PMC
Burnett JB, Lupu FI, Eggenschwiler JT. Proper ciliary assembly is critical for restricting Hedgehog signaling during early eye development in mice. Dev Biol. 2017;430:32–40. PubMed PMC
Lettice LA, Williamson I, Wiltshire JH, Peluso S, Devenney PS, Hill AE, et al. Opposing functions of the ETS factor family define Shh spatial expression in limb buds and underlie polydactyly. Dev Cell. 2012;22:459–467. PubMed PMC
Wang C, Li J, Takemaru KI, Jiang X, Xu G, Wang B. Centrosomal protein Dzip1l binds Cby, promotes ciliary bud formation, and acts redundantly with Bromi to regulate ciliogenesis in the mouse. Development. 2018. 10.1242/dev.164236. PubMed PMC
Cardozo PL, de Lima IBQ, Maciel EMA, Silva NC, Dobransky T, Ribeiro FM. Synaptic elimination in neurological disorders. Curr Neuropharmacol. 2019;17:1071–1095. PubMed PMC
Castellone MD, Laukkanen MO. TGF-beta1, WNT, and SHH signaling in tumor progression and in fibrotic diseases. Front Biosci (Schol Ed) 2017;9:31–45. PubMed
Hébert JM. Only scratching the cell surface: extracellular signals in cerebrum development. Curr Opin Genet Dev. 2013;23:470–474. PubMed PMC
Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β pathways impinge on Hedgehog signaling complexity: an open window on cancer. Front Genet. 2019;10:711. PubMed PMC
Wallace VA. Proliferative and cell fate effects of Hedgehog signaling in the vertebrate retina. Brain Res. 2008;1192:61–75. PubMed
Braunger BM, Ohlmann A, Koch M, Tanimoto N, Volz C, Yang Y, et al. Constitutive overexpression of Norrin activates Wnt/β-catenin and endothelin-2 signaling to protect photoreceptors from light damage. Neurobiol Dis. 2013;50:1–12. PubMed
Fujimura N. WNT/β-catenin signaling in vertebrate eye development. Front Cell Dev Biol. 2016;4:138. PubMed PMC
Roessler E, Muenke M. The molecular genetics of holoprosencephaly. Am J Med Genet C: Semin Med Genet. 2010;154C:52–61. PubMed PMC
Chen JK. I only have eye for ewe: the discovery of cyclopamine and development of Hedgehog pathway-targeting drugs. Nat Prod Rep. 2016. 10.1039/c5np00153f. PubMed PMC
Sulik KK, Dehart DB, Rogers JM, Chernoff N. Teratogenicity of low doses of all-trans retinoic acid in presomite mouse embryos. Teratology. 1995;51:398–403. PubMed
Lanoue L, Dehart DB, Hinsdale ME, Maeda N, Tint GS, Sulik KK. Limb, genital, CNS, and facial malformations result from gene/environment-induced cholesterol deficiency: further evidence for a link to sonic hedgehog. Am J Med Genet. 1997;73:24–31. PubMed
Lipinski RJ, Godin EA, O’leary-Moore SK, Parnell SE, Sulik KK. Genesis of teratogen-induced holoprosencephaly in mice. Am J Med Genet C: Semin Med Genet. 2010;154C:29–42. PubMed PMC
Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996;383:407–413. PubMed
Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell. 1993. 10.1016/0092-8674:90627-3. PubMed
Sasai N, Toriyama M, Kondo T. Hedgehog signal and genetic disorders. Front Genet. 2019. 10.3389/fgene.2019.01103. PubMed PMC
Albertson RC, Payne-Ferreira TL, Postlehwait J, Yelick PC. Zebrafish acvr2a and acvr2b exhibit distinct roles in craniofacial development. Dev Dyn. 2005. 10.1002/dvdy.20480. PubMed
Mattapallil MJ, Wawrousek EF, Chan CC, Zhao H, Roychoudhury J, Ferguson TA, et al. The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci. 2012. 10.1167/iovs.12-9662. PubMed PMC
Moore BA, Leonard BC, Sebbag L, Edwards SG, Cooper A, Imai DM, et al. Identification of genes required for eye development by high-throughput screening of mouse knockouts. Commun Biol. 2018. 10.1038/s42003-018-0226-0. PubMed PMC
Moore BA, Roux MJ, Sebbag L, Cooper A, Edwards SG, Leonard BC, et al. A population study of common ocular abnormalities in C57BL/6Nrd8mice. Invest Opthalmol Vis Sci. 2018;59:2252. PubMed PMC
Haselimashhadi H, Mason JC, Mallon AM, Smedley D, Meehan TF, Parkinson H. OpenStats: a robust and scalable software package for reproducible analysis of high-throughput phenotypic data. PLoS One. 2020. 10.1371/journal.pone.0242933. PubMed PMC
Gene ontology consortium: going forward. Nucleic Acids Res. 2015. 10.1093/nar/gku1179. PubMed PMC
Szklarczyk D, Gable AL, Lyon D, Jung A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. PubMed PMC
Adams NC, Gale NW. Mammalian and Avian transgenesis. Berlin, Heidelberg: Springer; 2006. High resolution gene expression analysis in mice using genetically inserted reporter genes; pp. 131–172.