WNT/β-Catenin Signaling in Vertebrate Eye Development

. 2016 ; 4 () : 138. [epub] 20161130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27965955

The vertebrate eye is a highly specialized sensory organ, which is derived from the anterior neural plate, head surface ectoderm, and neural crest-derived mesenchyme. The single central eye field, generated from the anterior neural plate, divides to give rise to the optic vesicle, which evaginates toward the head surface ectoderm. Subsequently, the surface ectoderm, in conjunction with the optic vesicle invaginates to form the lens vesicle and double-layered optic cup, respectively. This complex process is controlled by transcription factors and several intracellular and extracellular signaling pathways including WNT/β-catenin signaling. This signaling pathway plays an essential role in multiple developmental processes and has a profound effect on cell proliferation and cell fate determination. During eye development, the activity of WNT/β-catenin signaling is tightly controlled. Faulty regulation of WNT/β-catenin signaling results in multiple ocular malformations due to defects in the process of cell fate determination and differentiation. This mini-review summarizes recent findings on the role of WNT/β-catenin signaling in eye development. Whilst this mini-review focuses on loss-of-function and gain-of-function mutants of WNT/β-catenin signaling components, it also highlights some important aspects of β-catenin-independent WNT signaling in the eye development at later stages.

Zobrazit více v PubMed

Alldredge A., Fuhrmann S. (2016). Loss of Axin2 causes ocular defects during mouse eye development. Invest. Ophthalmol. Vis. Sci. 57, 5253–5262. 10.1167/iovs.15-18599 PubMed DOI PMC

Bailey A. P., Bhattacharyya S., Bronner-Fraser M., Streit A. (2006). Lens specification is the ground state of all sensory placodes, from which FGF promotes olfactory identity. Dev. Cell 11, 505–517. 10.1016/j.devcel.2006.08.009 PubMed DOI

Bharti K., Nguyen M. T., Skuntz S., Bertuzzi S., Arnheiter H. (2006). The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res. 19, 380–394. 10.1111/j.1600-0749.2006.00318.x PubMed DOI PMC

Bhinge A., Poschmann J., Namboori S. C., Tian X., Jia Hui Loh S., Traczyk A., et al. . (2014). MiR-135b is a direct PAX6 target and specifies human neuroectoderm by inhibiting TGF-beta/BMP signaling. EMBO J. 33, 1271–1283. 10.1002/embj.201387215 PubMed DOI PMC

Birdsey G. M., Shah A. V., Dufton N., Reynolds L. E., Osuna Almagro L., Yang Y., et al. . (2015). The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling. Dev. Cell 32, 82–96. 10.1016/j.devcel.2014.11.016 PubMed DOI PMC

Bovolenta P., Esteve P., Ruiz J. M., Cisneros E., Lopez-Rios J. (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J. Cell Sci. 121(Pt 6), 737–746. 10.1242/jcs.026096 PubMed DOI

Cain S., Martinez G., Kokkinos M. I., Turner K., Richardson R. J., Abud H. E., et al. . (2008). Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev. Biol. 321, 420–433. 10.1016/j.ydbio.2008.07.002 PubMed DOI

Carpenter A. C., Smith A. N., Wagner H., Cohen-Tayar Y., Rao S., Wallace V., et al. . (2015). Wnt ligands from the embryonic surface ectoderm regulate ‘bimetallic strip’ optic cup morphogenesis in mouse. Development 142, 972–982. 10.1242/dev.120022 PubMed DOI PMC

Cavodeassi F., Houart C. (2012). Brain regionalization: of signaling centers and boundaries. Dev. Neurobiol. 72, 218–233. 10.1002/dneu.20938 PubMed DOI

Chen Y., Stump R. J., Lovicu F. J., Shimono A., McAvoy J. W. (2008). Wnt signaling is required for organization of the lens fiber cell cytoskeleton and development of lens three-dimensional architecture. Dev. Biol. 324, 161–176. 10.1016/j.ydbio.2008.09.002 PubMed DOI PMC

Cho S. H., Cepko C. L. (2006). Wnt2b/β-catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye. Development 133, 3167–3177. 10.1242/dev.02474 PubMed DOI

Cruciat C. M., Niehrs C. (2013). Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol. 5:a015081. 10.1101/cshperspect.a015081 PubMed DOI PMC

Cvekl A., Ashery-Padan R. (2014). The cellular and molecular mechanisms of vertebrate lens development. Development 141, 4432–4447. 10.1242/dev.107953 PubMed DOI PMC

Dawes L. J., Sugiyama Y., Lovicu F. J., Harris C. G., Shelley E. J., McAvoy J. W. (2014). Interactions between lens epithelial and fiber cells reveal an intrinsic self-assembly mechanism. Dev. Biol. 385, 291–303. 10.1016/j.ydbio.2013.10.030 PubMed DOI PMC

Eiraku M., Takata N., Ishibashi H., Kawada M., Sakakura E., Okuda S., et al. . (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56. 10.1038/nature09941 PubMed DOI

Esteve P., Sandonis A., Cardozo M., Malapeira J., Ibañez C., Crespo I., et al. . (2011a). SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat. Neurosci. 14, 562–569. 10.1038/nn.2794 PubMed DOI

Esteve P., Sandonis A., Ibanez C., Shimono A., Guerrero I., Bovolenta P. (2011b). Secreted frizzled-related proteins are required for Wnt/β-catenin signalling activation in the vertebrate optic cup. Development 138, 4179–4184. 10.1242/dev.065839 PubMed DOI

Fotaki V., Smith R., Pratt T., Price D. J. (2013). Foxg1 is required to limit the formation of ciliary margin tissue and Wnt/β-catenin signalling in the developing nasal retina of the mouse. Dev. Biol. 380, 299–313. 10.1016/j.ydbio.2013.04.017 PubMed DOI PMC

Franco C. A., Jones M. L., Bernabeu M. O., Vion A. C., Barbacena P., Fan J., et al. . (2016). Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. Elife 5:e07727. 10.7554/eLife.07727 PubMed DOI PMC

Fuerer C., Habib S. J., Nusse R. (2010). A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Dev. Dyn. 239, 184–190. 10.1002/dvdy.22067 PubMed DOI PMC

Fuhrmann S. (2008). Wnt signaling in eye organogenesis. Organogenesis 4, 60–67. 10.4161/org.4.2.5850 PubMed DOI PMC

Fuhrmann S., Levine E. M., Reh T. A. (2000). Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development 127, 4599–4609. PubMed

Fuhrmann S., Zou C., Levine E. M. (2014). Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp. Eye Res. 123, 141–150. 10.1016/j.exer.2013.09.003 PubMed DOI PMC

Fujimura N., Klimova L., Antosova B., Smolikova J., Machon O., Kozmik Z. (2015). Genetic interaction between Pax6 and β-catenin in the developing retinal pigment epithelium. Dev. Genes Evol. 225, 121–128. 10.1007/s00427-015-0493-4 PubMed DOI

Fujimura N., Taketo M. M., Mori M., Korinek V., Kozmik Z. (2009). Spatial and temporal regulation of Wnt/β-catenin signaling is essential for development of the retinal pigment epithelium. Dev. Biol. 334, 31–45. 10.1016/j.ydbio.2009.07.002 PubMed DOI

Gariano R. F., Gardner T. W. (2005). Retinal angiogenesis in development and disease. Nature 438, 960–966. 10.1038/nature04482 PubMed DOI

Grindley J. C., Davidson D. R., Hill R. E. (1995). The role of Pax-6 in eye and nasal development. Development 121, 1433–1442. PubMed

Grocott T., Johnson S., Bailey A. P., Streit A. (2011). Neural crest cells organize the eye via TGF-β and canonical Wnt signalling. Nat. Commun. 2, 265. 10.1038/ncomms1269 PubMed DOI PMC

Hägglund A. C., Berghard A., Carlsson L. (2013). Canonical Wnt/β-catenin signalling is essential for optic cup formation. PLoS ONE 8:e81158. 10.1371/journal.pone.0081158 PubMed DOI PMC

Heavner W., Pevny L. (2012). Eye development and retinogenesis. Cold Spring Harb. Perspect. Biol. 4:a008391. 10.1101/cshperspect.a008391 PubMed DOI PMC

Heuberger J., Birchmeier W. (2010). Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb. Perspect. Biol. 2:a002915. 10.1101/cshperspect.a002915 PubMed DOI PMC

Hill R. E., Favor J., Hogan B. L., Ton C. C., Saunders G. F., Hanson I. M., et al. . (1991). Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525. 10.1038/354522a0 PubMed DOI

Huang W., Li Q., Amiry-Moghaddam M., Hokama M., Sardi S. H., Nagao M., et al. . (2016). Critical endothelial regulation by LRP5 during retinal vascular development. PLoS ONE 11:e0152833. 10.1371/journal.pone.0152833 PubMed DOI PMC

Huelsken J., Vogel R., Brinkmann V., Erdmann B., Birchmeier C., Birchmeier W. (2000). Requirement for beta-catenin in anterior-posterior axis formation in mice. J. Cell Biol. 148, 567–578. 10.1083/jcb.148.3.567 PubMed DOI PMC

Inoue T., Nakamura S., Osumi N. (2000). Fate mapping of the mouse prosencephalic neural plate. Dev. Biol. 219, 373–383. 10.1006/dbio.2000.9616 PubMed DOI

Iwao K., Inatani M., Ogata-Iwao M., Yamaguchi Y., Okinami S., Tanihara H. (2010). Heparan sulfate deficiency in periocular mesenchyme causes microphthalmia and ciliary body dysgenesis. Exp. Eye Res. 90, 81–88. 10.1016/j.exer.2009.09.017 PubMed DOI

Junge H. J., Yang S., Burton J. B., Paes K., Shu X., French D. M., et al. (2009). TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell 139, 299–311. 10.1016/j.cell.2009.07.048 PubMed DOI

Ke J., Harikumar K. G., Erice C., Chen C., Gu X., Wang L., et al. . (2013). Structure and function of Norrin in assembly and activation of a Frizzled 4-Lrp5/6 complex. Genes Dev. 27, 2305–2319. 10.1101/gad.228544.113 PubMed DOI PMC

Korn C., Scholz B., Hu J., Srivastava K., Wojtarowicz J., Arnsperger T., et al. . (2014). Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis. Development 141, 1757–1766. 10.1242/dev.104422 PubMed DOI

Kreslova J., Machon O., Ruzickova J., Lachova J., Wawrousek E. F., Kemler R., et al. . (2007). Abnormal lens morphogenesis and ectopic lens formation in the absence of beta-catenin function. Genesis 45, 157–168. 10.1002/dvg.20277 PubMed DOI

Liu H., Mohamed O., Dufort D., Wallace V. A. (2003). Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev. Dyn. 227, 323–334. 10.1002/dvdy.10315 PubMed DOI

Liu H., Thurig S., Mohamed O., Dufort D., Wallace V. A. (2006). Mapping canonical Wnt signaling in the developing and adult retina. Invest. Ophthalmol. Vis. Sci. 47, 5088–5097. 10.1167/iovs.06-0403 PubMed DOI

Liu H., Xu S., Wang Y., Mazerolle C., Thurig S., Coles B. L., et al. . (2007). Ciliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling. Dev. Biol. 308, 54–67. 10.1016/j.ydbio.2007.04.052 PubMed DOI

Loh K. M., van Amerongen R., Nusse R. (2016). Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev. Cell 38, 643–655. 10.1016/j.devcel.2016.08.011 PubMed DOI

Machon O., Kreslova J., Ruzickova J., Vacik T., Klimova L., Fujimura N., et al. . (2010). Lens morphogenesis is dependent on Pax6-mediated inhibition of the canonical Wnt/β-catenin signaling in the lens surface ectoderm. Genesis 48, 86–95. 10.1002/dvg.20583 PubMed DOI

Martinez G., Wijesinghe M., Turner K., Abud H. E., Taketo M. M., Noda T., et al. . (2009). Conditional mutations of β-catenin and APC reveal roles for canonical Wnt signaling in lens differentiation. Invest. Ophthalmol. Vis. Sci. 50, 4794–4806. 10.1167/iovs.09-3567 PubMed DOI

Martínez-Morales J. R., Rodrigo I., Bovolenta P. (2004). Eye development: a view from the retina pigmented epithelium. Bioessays 26, 766–777. 10.1002/bies.20064 PubMed DOI

Matsuo I., Kimura-Yoshida C. (2014). Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130545. 10.1098/rstb.2013.0545 PubMed DOI PMC

Matsushima D., Heavner W., Pevny L. H. (2011). Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6. Development 138, 443–454. 10.1242/dev.055178 PubMed DOI PMC

Mii Y., Taira M. (2009). Secreted Frizzled-related proteins enhance the diffusion of Wnt ligands and expand their signalling range. Development 136, 4083–4088. 10.1242/dev.032524 PubMed DOI

Misra K., Matise M. P. (2010). A critical role for sFRP proteins in maintaining caudal neural tube closure in mice via inhibition of BMP signaling. Dev. Biol. 337, 74–83. 10.1016/j.ydbio.2009.10.015 PubMed DOI

Mukhopadhyay M., Shtrom S., Rodriguez-Esteban C., Chen L., Tsukui T., Gomer L., et al. . (2001). Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev. Cell 1, 423–434. 10.1016/S1534-5807(01)00041-7 PubMed DOI

Pontoriero G. F., Smith A. N., Miller L. A., Radice G. L., West-Mays J. A., Lang R. A. (2009). Co-operative roles for E-cadherin and N-cadherin during lens vesicle separation and lens epithelial cell survival. Dev. Biol. 326, 403–417. 10.1016/j.ydbio.2008.10.011 PubMed DOI PMC

Posthaus H., Williamson L., Baumann D., Kemler R., Caldelari R., Suter M. M., et al. (2002). β-Catenin is not required for proliferation and differentiation of epidermal mouse keratinocytes. J. Cell Sci. 115(Pt 23), 4587–4595. 10.1242/jcs.00141 PubMed DOI

Sarrazin S., Lamanna W. C., Esko J. D. (2011). Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3:a004952. 10.1101/cshperspect.a004952 PubMed DOI PMC

Satoh W., Matsuyama M., Takemura H., Aizawa S., Shimono A. (2008). Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-catenin and the planar cell polarity pathways during early trunk formation in mouse. Genesis 46, 92–103. 10.1002/dvg.20369 PubMed DOI

Schepsky A., Bruser K., Gunnarsson G. J., Goodall J., Hallsson J. H., Goding C. R., et al. . (2006). The microphthalmia-associated transcription factor Mitf interacts with β-catenin to determine target gene expression. Mol. Cell. Biol. 26, 8914–8927. 10.1128/MCB.02299-05 PubMed DOI PMC

Seo E., Basu-Roy U., Zavadil J., Basilico C., Mansukhani A. (2011). Distinct functions of Sox2 control self-renewal and differentiation in the osteoblast lineage. Mol. Cell. Biol. 31, 4593–4608. 10.1128/MCB.05798-11 PubMed DOI PMC

Smith A. N., Miller L. A., Song N., Taketo M. M., Lang R. A. (2005). The duality of beta-catenin function: a requirement in lens morphogenesis and signaling suppression of lens fate in periocular ectoderm. Dev. Biol. 285, 477–489. 10.1016/j.ydbio.2005.07.019 PubMed DOI

Stefater J. A., III., Lewkowich I., Rao S., Mariggi G., Carpenter A. C., Burr A. R., et al. . (2011). Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 474, 511–515. 10.1038/nature10085 PubMed DOI PMC

Steinfeld J., Steinfeld I., Coronato N., Hampel M. L., Layer P. G., Araki M., et al. . (2013). RPE specification in the chick is mediated by surface ectoderm-derived BMP and Wnt signalling. Development 140, 4959–4969. 10.1242/dev.096990 PubMed DOI

Stump R. J., Ang S., Chen Y., von Bahr T., Lovicu F. J., Pinson K., et al. . (2003). A role for Wnt/beta-catenin signaling in lens epithelial differentiation. Dev. Biol. 259, 48–61. 10.1016/S0012-1606(03)00179-9 PubMed DOI

Sugiyama Y., Lovicu F. J., McAvoy J. W. (2011). Planar cell polarity in the mammalian eye lens. Organogenesis 7, 191–201. 10.4161/org.7.3.18421 PubMed DOI PMC

Sugiyama Y., Shelley E. J., Wen L., Stump R. J., Shimono A., Lovicu F. J., et al. (2013). Sfrp1 and Sfrp2 are not involved in Wnt/β-catenin signal silencing during lens induction but are required for maintenance of Wnt/beta-catenin signaling in lens epithelial cells. Dev. Biol. 384, 181–193. 10.1016/j.ydbio.2013.10.008 PubMed DOI PMC

Sugiyama Y., Stump R. J., Nguyen A., Wen L., Chen Y., Wang Y., et al. . (2010). Secreted frizzled-related protein disrupts PCP in eye lens fiber cells that have polarised primary cilia. Dev. Biol. 338, 193–201. 10.1016/j.ydbio.2009.11.033 PubMed DOI PMC

Tao Q., Yokota C., Puck H., Kofron M., Birsoy B., Yan D., et al. . (2005). Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857–871. 10.1016/j.cell.2005.01.013 PubMed DOI

Trimarchi J. M., Cho S. H., Cepko C. L. (2009). Identification of genes expressed preferentially in the developing peripheral margin of the optic cup. Dev. Dyn. 238, 2327–2329. 10.1002/dvdy.21973 PubMed DOI PMC

Tsukiyama T., Yamaguchi T. P. (2012). Mice lacking Wnt2b are viable and display a postnatal olfactory bulb phenotype. Neurosci. Lett. 512, 48–52. 10.1016/j.neulet.2012.01.062 PubMed DOI PMC

Veien E. S., Rosenthal J. S., Kruse-Bend R. C., Chien C. B., Dorsky R. I. (2008). Canonical Wnt signaling is required for the maintenance of dorsal retinal identity. Development 135, 4101–4111. 10.1242/dev.027367 PubMed DOI PMC

Wang Y., Rattner A., Zhou Y., Williams J., Smallwood P. M., Nathans J. (2012). Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151, 1332–1344. 10.1016/j.cell.2012.10.042 PubMed DOI PMC

Westenskow P. D., McKean J. B., Kubo F., Nakagawa S., Fuhrmann S. (2010). Ectopic Mitf in the embryonic chick retina by co-transfection of beta-catenin and Otx2. Invest. Ophthalmol. Vis. Sci. 51, 5328–5335. 10.1167/iovs.09-5015 PubMed DOI PMC

Westenskow P., Piccolo S., Fuhrmann S. (2009). Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development 136, 2505–2510. 10.1242/dev.032136 PubMed DOI PMC

Xu Q., Wang Y., Dabdoub A., Smallwood P. M., Williams J., Woods C., et al. . (2004). Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116, 883–895. 10.1016/S0092-8674(04)00216-8 PubMed DOI

Yamben I. F., Rachel R. A., Shatadal S., Copeland N. G., Jenkins N. A., Warming S., et al. . (2013). Scrib is required for epithelial cell identity and prevents epithelial to mesenchymal transition in the mouse. Dev. Biol. 384, 41–52. 10.1016/j.ydbio.2013.09.027 PubMed DOI PMC

Ye X., Wang Y., Cahill H., Yu M., Badea T. C., Smallwood P. M., et al. . (2009). Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139, 285–298. 10.1016/j.cell.2009.07.047 PubMed DOI PMC

Zhou C. J., Molotkov A., Song L., Li Y., Pleasure D. E., Pleasure S. J., et al. . (2008). Ocular coloboma and dorsoventral neuroretinal patterning defects in Lrp6 mutant eyes. Dev. Dyn. 237, 3681–3689. 10.1002/dvdy.21770 PubMed DOI PMC

Zhou J., Qu J., Yi X. P., Graber K., Huber L., Wang X., et al. . (2007). Upregulation of gamma-catenin compensates for the loss of beta-catenin in adult cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 292, H270–H276. 10.1152/ajpheart.00576.2006 PubMed DOI

Zhou Y., Wang Y., Tischfield M., Williams J., Smallwood P. M., Rattner A., et al. . (2014). Canonical WNT signaling components in vascular development and barrier formation. J. Clin. Invest. 124, 3825–3846. 10.1172/JCI76431 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genome-wide screening reveals the genetic basis of mammalian embryonic eye development

. 2023 Feb 03 ; 21 (1) : 22. [epub] 20230203

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...