Modelling of carbohydrate-aromatic interactions: ab initio energetics and force field performance
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- aromatické uhlovodíky chemie metabolismus MeSH
- chemické modely * MeSH
- metabolismus sacharidů * MeSH
- počítačová simulace * MeSH
- sacharidy chemie MeSH
- termodynamika * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aromatické uhlovodíky MeSH
- sacharidy MeSH
Aromatic amino acid residues are often present in carbohydrate-binding sites of proteins. These binding sites are characterized by a placement of a carbohydrate moiety in a stacking orientation to an aromatic ring. This arrangement is an example of CH/pi interactions. Ab initio interaction energies for 20 carbohydrate-aromatic complexes taken from 6 selected ultra-high resolution X-ray structures of glycosidases and carbohydrate-binding proteins were calculated. All interaction energies of a pyranose moiety with a side chain of an aromatic residue were calculated as attractive with interaction energy ranging from -2.8 to -12.3 kcal/mol as calculated at the MP2/6-311+G(d) level. Strong attractive interactions were observed for a wide range of orientations of carbohydrate and aromatic ring as present in selected X-ray structures. The most attractive interaction was associated with apparent combination of CH/pi interactions and classical H-bonds. The failure of Hartree-Fock method (interaction energies from +1.0 to -6.9 kcal/mol) can be explained by a dispersion nature of a majority of the studied complexes. We also present a comparison of interaction energies calculated at the MP2 level with those calculated using molecular mechanics force fields (OPLS, GROMOS, CSFF/CHARMM, CHEAT/CHARMM, Glycam/AMBER, MM2 and MM3). For a majority of force fields there was a strong correlation with MP2 values. RMSD between MP2 and force field values were 1.0 for CSFF/CHARMM, 1.2 for Glycam/AMBER, 1.2 for GROMOS, 1.3 for MM3, 1.4 for MM2, 1.5 for OPLS and to 2.3 for CHEAT/CHARMM (in kcal/mol). These results show that molecular mechanics approximates interaction energies very well and support an application of molecular mechanics methods in the area of glycochemistry and glycobiology.
Zobrazit více v PubMed
Biochemistry. 2002 Apr 2;41(13):4246-54 PubMed
Structure. 2003 Jul;11(7):855-64 PubMed
J Am Chem Soc. 2005 May 25;127(20):7379-86 PubMed
Electrophoresis. 1997 Dec;18(15):2714-23 PubMed
Biochemistry. 2000 Jan 18;39(2):292-9 PubMed
J Am Chem Soc. 1988 Mar 1;110(6):1657-66 PubMed
J Phys Chem B. 1998 Apr 30;102(18):3586-616 PubMed
Proteins. 2004 Nov 1;57(2):225-42 PubMed
Biochemistry. 2003 Feb 18;42(6):1796-803 PubMed
Carbohydr Res. 2004 Sep 13;339(13):2275-80 PubMed
J Mol Biol. 2002 Mar 8;316(5):1061-9 PubMed
J Mol Biol. 1998 Oct 9;282(5):1043-59 PubMed
Chemistry. 2002 May 03;8(9):2047-56 PubMed
Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11275-80 PubMed
Carbohydr Res. 2004 Apr 2;339(5):1015-20 PubMed
Biochemistry. 2005 Jun 14;44(23):8554-62 PubMed
J Comput Chem. 2002 Oct;23(13):1236-43 PubMed
J Mol Biol. 2001 Mar 16;307(1):357-77 PubMed
Proteins. 2004 Apr 1;55(1):44-65 PubMed
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14077-82 PubMed
J Mol Biol. 2001 Jul 20;310(4):875-84 PubMed
J Am Chem Soc. 2001 Apr 11;123(14):3323-31 PubMed
J Comput Chem. 2004 Sep;25(12):1463-73 PubMed
Chem Rev. 2000 Nov 8;100(11):4253-4264 PubMed
Protein Sci. 2004 Sep;13(9):2502-14 PubMed
Protein Pept Lett. 2002 Jun;9(3):195-209 PubMed
Chem Biol. 1996 Dec;3(12):973-80 PubMed
J Am Chem Soc. 2004 Feb 4;126(4):1047-54 PubMed
Carbohydr Res. 2004 Apr 2;339(5):937-48 PubMed
Angew Chem Int Ed Engl. 1999 Oct 18;38(20):2978-2996 PubMed
CH/π Interactions in Carbohydrate Recognition