Structural Basis of the Function of Yariv Reagent-An Important Tool to Study Arabinogalactan Proteins

. 2021 ; 8 () : 682858. [epub] 20210607

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34179088

Arabinogalactan proteins are very abundant, heavily glycosylated plant cell wall proteins. They are intensively studied because of their crucial role in plant development as well as their function in plant defence. Research of these biomacromolecules is complicated by the lack of tools for their analysis and characterisation due to their extreme heterogeneity. One of the few available tools for detection, isolation, characterisation, and functional studies of arabinogalactan proteins is Yariv reagents. Yariv reagent is a synthetic aromatic glycoconjugate originally prepared as an antigen for immunization. Later, it was found that this compound can precipitate arabinogalactan proteins, namely, their ß-D-(1→3)-galactan structures. Even though this compound has been intensively used for decades, the structural basis of arabinogalactan protein precipitation by Yariv is not known. Multiple biophysical studies have been published, but none of them attempted to elucidate the three-dimensional structure of the Yariv-galactan complex. Here we use a series of molecular dynamics simulations of systems containing one or multiple molecules of ß-D-galactosyl Yariv reagent with or without oligo ß-D-(1→3)-galactan to predict the structure of the complex. According to our model of Yariv-galactan complexes, Yariv reagent forms stacked oligomers stabilized by π-π and CH/π interactions. These oligomers may contain irregularities. Galactan structures crosslink these Yariv oligomers. The results were compared with studies in literature.

Zobrazit více v PubMed

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., et al. (2015). GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 1-2, 19–25. 10.1016/j.softx.2015.06.001 DOI

Bussi G., Donadio D., Parrinello M. (2007). Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 126, 014101. 10.1063/1.2408420 PubMed DOI

Castilleux R., Ropitaux M., Manasfi Y., Bernard S., Vicré-Gibouin M., Driouich A. (2020). “Contributions to Arabinogalactan Protein Analysis,” in The Plant Cell wall: Methods and Protocols. Editor Popper Z. A. (New York, NY: Springer; ), 383–402. 10.1007/978-1-0716-0621-6_22 PubMed DOI

Darden T., York D., Pedersen L. (1993). Particle Mesh Ewald: AnN⋅Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 98, 10089–10092. 10.1063/1.464397 DOI

Ellis M., Egelund J., Schultz C. J., Bacic A. (2010). Arabinogalactan-Proteins: Key Regulators at the Cell Surface?. Plant Physiol. 153, 403–419. 10.1104/pp.110.156000 PubMed DOI PMC

Gorres K. L., Raines R. T. (2010). Prolyl 4-hydroxylase. Crit. Rev. Biochem. Mol. Biol. 45, 106–124. 10.3109/10409231003627991 PubMed DOI PMC

Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M. (1997). LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H DOI

Hoshing R., Leeber III B. W., III, Kuhn H., Caianiello D., Dale B., Saladino M., et al. (2020). The Chirality of Yariv Reagent Aggregates Correlates with AGP-Binding Ability. ChemrXiv (preprint), 1–25. 10.26434/chemrxiv.13154261.v1 PubMed DOI

Jakalian A., Bush B. L., Jack D. B., Bayly C. I. (2000). Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method. J. Comput. Chem. 21, 132–146. 10.1002/(sici)1096-987x(20000130)21:2<132::aid-jcc5>3.0.co;2-p PubMed DOI

Johnson K. L., Cassin A. M., Lonsdale A., Wong G. K.-S., Soltis D. E., Miles N. W., et al. (2017). Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes. Plant Physiol. 174, 904–921. 10.1104/pp.17.00295 PubMed DOI PMC

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L. (1983). Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 79, 926–935. 10.1063/1.445869 DOI

Kirschner K. N., Yongye A. B., Tschampel S. M., González-Outeiriño J., Daniels C. R., Foley B. L., et al. (2008). GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates. J. Comput. Chem. 29, 622–655. 10.1002/jcc.20820 PubMed DOI PMC

Kitazawa K., Tryfona T., Yoshimi Y., Hayashi Y., Kawauchi S., Antonov L., et al. (2013). β-Galactosyl Yariv Reagent Binds to the β-1,3-Galactan of Arabinogalactan Proteins. Plant Physiol. 161, 1117–1126. 10.1104/pp.112.211722 PubMed DOI PMC

Knoch E., Dilokpimol A., Geshi N. (2014). Arabinogalactan Proteins: Focus on Carbohydrate Active Enzymes. Front. Plant Sci. 5, 198. 10.3389/fpls.2014.00198 PubMed DOI PMC

Lamport D. T. A., Várnai P. (2013). Periplasmic Arabinogalactan Glycoproteins Act as a Calcium Capacitor that Regulates Plant Growth and Development. New Phytol. 197, 58–64. 10.1111/nph.12005 PubMed DOI

Ma Y., Yan C., Li H., Wu W., Liu Y., Wang Y., et al. (2017). Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom. Front. Plant Sci. 8, 66. 10.3389/fpls.2017.00066 PubMed DOI PMC

Ma Y., Zeng W., Bacic A., Johnson K. (2018). “AGPs through Time and Space,” in Annual Plant Reviews Online (Chichester, United Kingdom: American Cancer Society; ), 767–804. 10.1002/9781119312994.apr0608 DOI

McGibbon R. T., Beauchamp K. A., Harrigan M. P., Klein C., Swails J. M., Hernández C. X., et al. (2015). MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophysical J. 109, 1528–1532. 10.1016/j.bpj.2015.08.015 PubMed DOI PMC

Nguema-Ona E., Bannigan A., Chevalier L., Baskin T. I., Driouich A. (2007). Disruption of Arabinogalactan Proteins Disorganizes Cortical Microtubules in the Root of Arabidopsis thaliana . Plant J. 52, 240–251. 10.1111/j.1365-313X.2007.03224.x PubMed DOI

Nguema-Ona E., Coimbra S., Vicré-Gibouin M., Mollet J.-C., Driouich A. (2012). Arabinogalactan Proteins in Root and Pollen-Tube Cells: Distribution and Functional Aspects. Ann. Bot. 110, 383–404. 10.1093/aob/mcs143 PubMed DOI PMC

Nguema-Ona E., Vicré-Gibouin M., Cannesan M.-A., Driouich A. (2013). Arabinogalactan Proteins in Root-Microbe Interactions. Trends Plant Sci. 18, 440–449. 10.1016/j.tplants.2013.03.006 PubMed DOI

Nguema-Ona E., Vicré-Gibouin M., Gotté M., Plancot B., Lerouge P., Bardor M., et al. (2014). Cell wall O-Glycoproteins and N-Glycoproteins: Aspects of Biosynthesis and Function. Front. Plant Sci. 5, 499. 10.3389/fpls.2014.00499 PubMed DOI PMC

Nothnagel E. A. (1997). “Proteoglycans and Related Components in Plant Cells,” in International Review of Cytology. Editor Jeon K. W. (San Diego, CA: Academic Press; ), 195–291. 10.1016/s0074-7696(08)62118-x PubMed DOI

Olmos E., García De La Garma J., Gomez-Jimenez M. C., Fernandez-Garcia N. (2017). Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco By-2 Cell Cultures. Front. Plant Sci. 8, 1092. 10.3389/fpls.2017.01092 PubMed DOI PMC

Parrinello M., Rahman A. (1981). Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 52, 7182–7190. 10.1063/1.328693 DOI

Paulsen B. S., Craik D. J., Dunstan D. E., Stone B. A., Bacic A. (2014). The Yariv Reagent: Behaviour in Different Solvents and Interaction with a Gum Arabic Arabinogalactanprotein. Carbohydr. Polym. 106, 460–468. 10.1016/j.carbpol.2014.01.009 PubMed DOI

Salomon-Ferrer R., Case D. A., Walker R. C. (2013). An Overview of the Amber Biomolecular Simulation Package. Wires Comput. Mol. Sci. 3, 198–210. 10.1002/wcms.1121 DOI

Sato K., Hara K., Yoshimi Y., Kitazawa K., Ito H., Tsumuraya Y., et al. (2018). Yariv Reactivity of Type II Arabinogalactan from Larch wood. Carbohydr. Res. 467, 8–13. 10.1016/j.carres.2018.07.004 PubMed DOI

Seifert G. J. (2020). On the Potential Function of Type II Arabinogalactan O-Glycosylation in Regulating the Fate of Plant Secretory Proteins. Front. Plant Sci. 11, 563735. 10.3389/fpls.2020.563735 PubMed DOI PMC

Seifert G. J., Roberts K. (2007). The Biology of Arabinogalactan Proteins. Annu. Rev. Plant Biol. 58, 137–161. 10.1146/annurev.arplant.58.032806.103801 PubMed DOI

Showalter A. M., Keppler B., Lichtenberg J., Gu D., Welch L. R. (2010). A Bioinformatics Approach to the Identification, Classification, and Analysis of Hydroxyproline-Rich Glycoproteins. Plant Physiol. 153, 485–513. 10.1104/pp.110.156554 PubMed DOI PMC

Sousa da Silva A. W., Vranken W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res. Notes 5, 367. 10.1186/1756-0500-5-367 PubMed DOI PMC

Spiwok V., Lipovová P., Skálová T., Vondrácková E., Dohnálek J., Hašek J., et al. (2005). Modelling of Carbohydrate-Aromatic Interactions: Ab Initio Energetics and Force Field Performance. J. Comput. Aided Mol. Des. 19, 887–901. 10.1007/s10822-005-9033-z PubMed DOI

Spiwok V. (2017). CH/π Interactions in Carbohydrate Recognition. Molecules 22, 1038. 10.3390/molecules22071038 PubMed DOI PMC

Sponer J., Jurecka P., Marchan I., Luque F. J., Orozco M., Hobza P. (2006). Nature of Base Stacking: Reference Quantum-Chemical Stacking Energies in Ten Unique B-DNA Base-Pair Steps. Chemistry 12, 2854–2865. 10.1002/chem.200501239 PubMed DOI

Su S., Higashiyama T. (2018). Arabinogalactan Proteins and Their Sugar Chains: Functions in Plant Reproduction, Research Methods, and Biosynthesis. Plant Reprod. 31, 67–75. 10.1007/s00497-018-0329-2 PubMed DOI

Tan L., Leykam J. F., Kieliszewski M. J. (2003). Glycosylation Motifs that Direct Arabinogalactan Addition to Arabinogalactan-Proteins. Plant Physiol. 132, 1362–1369. 10.1104/pp.103.021766 PubMed DOI PMC

Tang X.-C., He Y.-Q., Wang Y., Sun M.-X. (2006). The Role of Arabinogalactan Proteins Binding to Yariv Reagents in the Initiation, Cell Developmental Fate, and Maintenance of Microspore Embryogenesis in Brassica Napus L. Cv. Topas. J. Exp. Bot. 57, 2639–2650. 10.1093/jxb/erl027 PubMed DOI

Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A. (2004). Development and Testing of a General Amber Force Field. J. Comput. Chem. 25, 1157–1174. 10.1002/jcc.20035 PubMed DOI

Willats W. G. T., Knox J. P. (1996). A Role for Arabinogalactan-Proteins in Plant Cell Expansion: Evidence from Studies on the Interaction of Beta-Glucosyl Yariv Reagent with Seedlings of Arabidopsis thaliana . Plant J. 9, 919–925. 10.1046/j.1365-313x.1996.9060919.x PubMed DOI

Yariv J., Lis H., Katchalski E. (1967). Precipitation of Arabic Acid and Some Seed Polysaccharides by Glycosylphenylazo Dyes. Biochem. J. 105, 1C–2C. 10.1042/bj1050001c PubMed DOI PMC

Yariv J., Rapport M., Graf L. (1962). The Interaction of Glycosides and Saccharides with Antibody to the Corresponding Phenylazo Glycosides. Biochem. J. 85, 383–388. 10.1042/bj0850383 PubMed DOI PMC

Yu M., Zhao J. (2012). The Cytological Changes of Tobacco Zygote and Proembryo Cells Induced by Beta-Glucosyl Yariv Reagent Suggest the Involvement of Arabinogalactan Proteins in Cell Division and Cell Plate Formation. BMC Plant Biol. 12, 126. 10.1186/1471-2229-12-126 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...