Structural Basis of the Function of Yariv Reagent-An Important Tool to Study Arabinogalactan Proteins
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34179088
PubMed Central
PMC8230119
DOI
10.3389/fmolb.2021.682858
PII: 682858
Knihovny.cz E-zdroje
- Klíčová slova
- Yariv phenylglycoside, arabinogalactan proteins (AGPs), glycochemistry, molecular dynamics simulation, noncovalent interactions,
- Publikační typ
- časopisecké články MeSH
Arabinogalactan proteins are very abundant, heavily glycosylated plant cell wall proteins. They are intensively studied because of their crucial role in plant development as well as their function in plant defence. Research of these biomacromolecules is complicated by the lack of tools for their analysis and characterisation due to their extreme heterogeneity. One of the few available tools for detection, isolation, characterisation, and functional studies of arabinogalactan proteins is Yariv reagents. Yariv reagent is a synthetic aromatic glycoconjugate originally prepared as an antigen for immunization. Later, it was found that this compound can precipitate arabinogalactan proteins, namely, their ß-D-(1→3)-galactan structures. Even though this compound has been intensively used for decades, the structural basis of arabinogalactan protein precipitation by Yariv is not known. Multiple biophysical studies have been published, but none of them attempted to elucidate the three-dimensional structure of the Yariv-galactan complex. Here we use a series of molecular dynamics simulations of systems containing one or multiple molecules of ß-D-galactosyl Yariv reagent with or without oligo ß-D-(1→3)-galactan to predict the structure of the complex. According to our model of Yariv-galactan complexes, Yariv reagent forms stacked oligomers stabilized by π-π and CH/π interactions. These oligomers may contain irregularities. Galactan structures crosslink these Yariv oligomers. The results were compared with studies in literature.
Department of Biochemistry and Microbiology University of Chemistry and Technology Prague Czechia
Department of Informatics and Chemistry University of Chemistry and Technology Prague Czechia
Zobrazit více v PubMed
Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., et al. (2015). GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 1-2, 19–25. 10.1016/j.softx.2015.06.001 DOI
Bussi G., Donadio D., Parrinello M. (2007). Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 126, 014101. 10.1063/1.2408420 PubMed DOI
Castilleux R., Ropitaux M., Manasfi Y., Bernard S., Vicré-Gibouin M., Driouich A. (2020). “Contributions to Arabinogalactan Protein Analysis,” in The Plant Cell wall: Methods and Protocols. Editor Popper Z. A. (New York, NY: Springer; ), 383–402. 10.1007/978-1-0716-0621-6_22 PubMed DOI
Darden T., York D., Pedersen L. (1993). Particle Mesh Ewald: AnN⋅Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 98, 10089–10092. 10.1063/1.464397 DOI
Ellis M., Egelund J., Schultz C. J., Bacic A. (2010). Arabinogalactan-Proteins: Key Regulators at the Cell Surface?. Plant Physiol. 153, 403–419. 10.1104/pp.110.156000 PubMed DOI PMC
Gorres K. L., Raines R. T. (2010). Prolyl 4-hydroxylase. Crit. Rev. Biochem. Mol. Biol. 45, 106–124. 10.3109/10409231003627991 PubMed DOI PMC
Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M. (1997). LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H DOI
Hoshing R., Leeber III B. W., III, Kuhn H., Caianiello D., Dale B., Saladino M., et al. (2020). The Chirality of Yariv Reagent Aggregates Correlates with AGP-Binding Ability. ChemrXiv (preprint), 1–25. 10.26434/chemrxiv.13154261.v1 PubMed DOI
Jakalian A., Bush B. L., Jack D. B., Bayly C. I. (2000). Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method. J. Comput. Chem. 21, 132–146. 10.1002/(sici)1096-987x(20000130)21:2<132::aid-jcc5>3.0.co;2-p PubMed DOI
Johnson K. L., Cassin A. M., Lonsdale A., Wong G. K.-S., Soltis D. E., Miles N. W., et al. (2017). Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes. Plant Physiol. 174, 904–921. 10.1104/pp.17.00295 PubMed DOI PMC
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L. (1983). Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 79, 926–935. 10.1063/1.445869 DOI
Kirschner K. N., Yongye A. B., Tschampel S. M., González-Outeiriño J., Daniels C. R., Foley B. L., et al. (2008). GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates. J. Comput. Chem. 29, 622–655. 10.1002/jcc.20820 PubMed DOI PMC
Kitazawa K., Tryfona T., Yoshimi Y., Hayashi Y., Kawauchi S., Antonov L., et al. (2013). β-Galactosyl Yariv Reagent Binds to the β-1,3-Galactan of Arabinogalactan Proteins. Plant Physiol. 161, 1117–1126. 10.1104/pp.112.211722 PubMed DOI PMC
Knoch E., Dilokpimol A., Geshi N. (2014). Arabinogalactan Proteins: Focus on Carbohydrate Active Enzymes. Front. Plant Sci. 5, 198. 10.3389/fpls.2014.00198 PubMed DOI PMC
Lamport D. T. A., Várnai P. (2013). Periplasmic Arabinogalactan Glycoproteins Act as a Calcium Capacitor that Regulates Plant Growth and Development. New Phytol. 197, 58–64. 10.1111/nph.12005 PubMed DOI
Ma Y., Yan C., Li H., Wu W., Liu Y., Wang Y., et al. (2017). Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom. Front. Plant Sci. 8, 66. 10.3389/fpls.2017.00066 PubMed DOI PMC
Ma Y., Zeng W., Bacic A., Johnson K. (2018). “AGPs through Time and Space,” in Annual Plant Reviews Online (Chichester, United Kingdom: American Cancer Society; ), 767–804. 10.1002/9781119312994.apr0608 DOI
McGibbon R. T., Beauchamp K. A., Harrigan M. P., Klein C., Swails J. M., Hernández C. X., et al. (2015). MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophysical J. 109, 1528–1532. 10.1016/j.bpj.2015.08.015 PubMed DOI PMC
Nguema-Ona E., Bannigan A., Chevalier L., Baskin T. I., Driouich A. (2007). Disruption of Arabinogalactan Proteins Disorganizes Cortical Microtubules in the Root of Arabidopsis thaliana . Plant J. 52, 240–251. 10.1111/j.1365-313X.2007.03224.x PubMed DOI
Nguema-Ona E., Coimbra S., Vicré-Gibouin M., Mollet J.-C., Driouich A. (2012). Arabinogalactan Proteins in Root and Pollen-Tube Cells: Distribution and Functional Aspects. Ann. Bot. 110, 383–404. 10.1093/aob/mcs143 PubMed DOI PMC
Nguema-Ona E., Vicré-Gibouin M., Cannesan M.-A., Driouich A. (2013). Arabinogalactan Proteins in Root-Microbe Interactions. Trends Plant Sci. 18, 440–449. 10.1016/j.tplants.2013.03.006 PubMed DOI
Nguema-Ona E., Vicré-Gibouin M., Gotté M., Plancot B., Lerouge P., Bardor M., et al. (2014). Cell wall O-Glycoproteins and N-Glycoproteins: Aspects of Biosynthesis and Function. Front. Plant Sci. 5, 499. 10.3389/fpls.2014.00499 PubMed DOI PMC
Nothnagel E. A. (1997). “Proteoglycans and Related Components in Plant Cells,” in International Review of Cytology. Editor Jeon K. W. (San Diego, CA: Academic Press; ), 195–291. 10.1016/s0074-7696(08)62118-x PubMed DOI
Olmos E., García De La Garma J., Gomez-Jimenez M. C., Fernandez-Garcia N. (2017). Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco By-2 Cell Cultures. Front. Plant Sci. 8, 1092. 10.3389/fpls.2017.01092 PubMed DOI PMC
Parrinello M., Rahman A. (1981). Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 52, 7182–7190. 10.1063/1.328693 DOI
Paulsen B. S., Craik D. J., Dunstan D. E., Stone B. A., Bacic A. (2014). The Yariv Reagent: Behaviour in Different Solvents and Interaction with a Gum Arabic Arabinogalactanprotein. Carbohydr. Polym. 106, 460–468. 10.1016/j.carbpol.2014.01.009 PubMed DOI
Salomon-Ferrer R., Case D. A., Walker R. C. (2013). An Overview of the Amber Biomolecular Simulation Package. Wires Comput. Mol. Sci. 3, 198–210. 10.1002/wcms.1121 DOI
Sato K., Hara K., Yoshimi Y., Kitazawa K., Ito H., Tsumuraya Y., et al. (2018). Yariv Reactivity of Type II Arabinogalactan from Larch wood. Carbohydr. Res. 467, 8–13. 10.1016/j.carres.2018.07.004 PubMed DOI
Seifert G. J. (2020). On the Potential Function of Type II Arabinogalactan O-Glycosylation in Regulating the Fate of Plant Secretory Proteins. Front. Plant Sci. 11, 563735. 10.3389/fpls.2020.563735 PubMed DOI PMC
Seifert G. J., Roberts K. (2007). The Biology of Arabinogalactan Proteins. Annu. Rev. Plant Biol. 58, 137–161. 10.1146/annurev.arplant.58.032806.103801 PubMed DOI
Showalter A. M., Keppler B., Lichtenberg J., Gu D., Welch L. R. (2010). A Bioinformatics Approach to the Identification, Classification, and Analysis of Hydroxyproline-Rich Glycoproteins. Plant Physiol. 153, 485–513. 10.1104/pp.110.156554 PubMed DOI PMC
Sousa da Silva A. W., Vranken W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res. Notes 5, 367. 10.1186/1756-0500-5-367 PubMed DOI PMC
Spiwok V., Lipovová P., Skálová T., Vondrácková E., Dohnálek J., Hašek J., et al. (2005). Modelling of Carbohydrate-Aromatic Interactions: Ab Initio Energetics and Force Field Performance. J. Comput. Aided Mol. Des. 19, 887–901. 10.1007/s10822-005-9033-z PubMed DOI
Spiwok V. (2017). CH/π Interactions in Carbohydrate Recognition. Molecules 22, 1038. 10.3390/molecules22071038 PubMed DOI PMC
Sponer J., Jurecka P., Marchan I., Luque F. J., Orozco M., Hobza P. (2006). Nature of Base Stacking: Reference Quantum-Chemical Stacking Energies in Ten Unique B-DNA Base-Pair Steps. Chemistry 12, 2854–2865. 10.1002/chem.200501239 PubMed DOI
Su S., Higashiyama T. (2018). Arabinogalactan Proteins and Their Sugar Chains: Functions in Plant Reproduction, Research Methods, and Biosynthesis. Plant Reprod. 31, 67–75. 10.1007/s00497-018-0329-2 PubMed DOI
Tan L., Leykam J. F., Kieliszewski M. J. (2003). Glycosylation Motifs that Direct Arabinogalactan Addition to Arabinogalactan-Proteins. Plant Physiol. 132, 1362–1369. 10.1104/pp.103.021766 PubMed DOI PMC
Tang X.-C., He Y.-Q., Wang Y., Sun M.-X. (2006). The Role of Arabinogalactan Proteins Binding to Yariv Reagents in the Initiation, Cell Developmental Fate, and Maintenance of Microspore Embryogenesis in Brassica Napus L. Cv. Topas. J. Exp. Bot. 57, 2639–2650. 10.1093/jxb/erl027 PubMed DOI
Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A. (2004). Development and Testing of a General Amber Force Field. J. Comput. Chem. 25, 1157–1174. 10.1002/jcc.20035 PubMed DOI
Willats W. G. T., Knox J. P. (1996). A Role for Arabinogalactan-Proteins in Plant Cell Expansion: Evidence from Studies on the Interaction of Beta-Glucosyl Yariv Reagent with Seedlings of Arabidopsis thaliana . Plant J. 9, 919–925. 10.1046/j.1365-313x.1996.9060919.x PubMed DOI
Yariv J., Lis H., Katchalski E. (1967). Precipitation of Arabic Acid and Some Seed Polysaccharides by Glycosylphenylazo Dyes. Biochem. J. 105, 1C–2C. 10.1042/bj1050001c PubMed DOI PMC
Yariv J., Rapport M., Graf L. (1962). The Interaction of Glycosides and Saccharides with Antibody to the Corresponding Phenylazo Glycosides. Biochem. J. 85, 383–388. 10.1042/bj0850383 PubMed DOI PMC
Yu M., Zhao J. (2012). The Cytological Changes of Tobacco Zygote and Proembryo Cells Induced by Beta-Glucosyl Yariv Reagent Suggest the Involvement of Arabinogalactan Proteins in Cell Division and Cell Plate Formation. BMC Plant Biol. 12, 126. 10.1186/1471-2229-12-126 PubMed DOI PMC