CH/π Interactions in Carbohydrate Recognition
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28644385
PubMed Central
PMC6152320
DOI
10.3390/molecules22071038
PII: molecules22071038
Knihovny.cz E-zdroje
- Klíčová slova
- CH/π interactions, carbohydrate-protein interactions, interaction energy, lectins, non-canonical hydrogen bond,
- MeSH
- lektiny chemie metabolismus MeSH
- molekulární modely MeSH
- sacharidy chemie MeSH
- vazba proteinů MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- lektiny MeSH
- sacharidy MeSH
Many carbohydrate-binding proteins contain aromatic amino acid residues in their binding sites. These residues interact with carbohydrates in a stacking geometry via CH/π interactions. These interactions can be found in carbohydrate-binding proteins, including lectins, enzymes and carbohydrate transporters. Besides this, many non-protein aromatic molecules (natural as well as artificial) can bind saccharides using these interactions. Recent computational and experimental studies have shown that carbohydrate-aromatic CH/π interactions are dispersion interactions, tuned by electrostatics and partially stabilized by a hydrophobic effect in solvated systems.
Zobrazit více v PubMed
Karasová-Lipovová P., Strnad H., Spiwok V., Malá Š., Kralová B., Russell N.J. The Cloning, Purification and Characterisation of a Cold-Active β-Galactosidase from the Psychrotolerant Antarctic Bacterium Arthrobacter sp. C2-2. Enzym. Microb. Technol. 2003;33:836–844. doi: 10.1016/S0141-0229(03)00211-4. DOI
Petroková H., Vondráčková E., Skálová T., Dohnálek J., Lipovová P., Spiwok V., Strnad H., Králová B., Hašek J. Crystallization and Preliminary X-Ray Diffraction Analysis of Cold-Active β-Galactosidase from Arthrobacter sp. C2-2. Collect. Czech. Chem. Commun. 2005;70:124–132. doi: 10.1135/cccc20050124. DOI
Skálová T., Dohnálek J., Spiwok V., Lipovová P., Vondráčková E., Petroková H., Dušková J., Strnad H., Králová B., Hašek J. Cold-active β-Galactosidase from Arthrobacter sp. C2-2 Forms Compact 660 kDa Hexamers: Crystal Structure at 1.9 Å Resolution. J. Mol. Biol. 2005;353:282–294. doi: 10.1016/j.jmb.2005.08.028. PubMed DOI
Juers D.H., Heightman T.D., Vasella A., McCarter J.D., Mackenzie L., Withers S.G., Matthews B.W. A structural view of the action of Escherichia coli (LacZ) β-galactosidase. Biochemistry. 2001;40:14781–14794. doi: 10.1021/bi011727i. PubMed DOI
Huber R.E., Hakda S., Cheng C., Cupples C.G., Edwards R.A. Trp-999 of β-galactosidase (Escherichia coli) is a key residue for binding, catalysis, and synthesis of allolactose, the natural lac operon inducer. Biochemistry. 2003;42:1796–1803. doi: 10.1021/bi0270642. PubMed DOI
Muraki M. The importance of CH/π interactions to the function of carbohydrate binding proteins. Protein Peptide Lett. 2002;9:195–209. doi: 10.2174/0929866023408751. PubMed DOI
Balaji P.V. Contribution of C-H...π Interactions to the Affinity and Specificity of Carbohydrate Binding Sites. Mini-Rev. Org. Chem. 2011;8:222–228. doi: 10.2174/157019311796197355. DOI
Asensio J.L., Ardá A., Cañada F.J., Jiménez-Barbero J. Carbohydrate-aromatic interactions. Acc. Chem. Res. 2013;46:946–954. doi: 10.1021/ar300024d. PubMed DOI
Rojas-Macias M.A., Lütteke T. Statistical analysis of amino acids in the vicinity of carbohydrate residues performed by GlyVicinity. Methods Mol. Biol. 2015;1273:215–226. doi: 10.1007/978-1-4939-2343-4_16. PubMed DOI
Codon Usage Database. [(accessed on 9 April 2017)]; Available online: http://www.kazusa.or.jp/codon/
Hudson K.L., Bartlett G.J., Diehl R.C., Agirre J., Gallagher T., Kiessling L.L., Woolfson D.N. Carbohydrate-Aromatic Interactions in Proteins. J. Am. Chem. Soc. 2015;137:15152–15160. doi: 10.1021/jacs.5b08424. PubMed DOI PMC
Rose I.A., Hanson K.R., Wilkinson K.D., Wimmer M.J. A suggestion for naming faces of ring compounds. Proc. Natl. Acad. Sci. USA. 1980;77:2439–2441. doi: 10.1073/pnas.77.5.2439. PubMed DOI PMC
Pérez S., Tvaroška I. Carbohydrate-protein interactions: Molecular modeling insights. Adv. Carbohyd. Chem. Biochem. 2014;71:9–136. doi: 10.1016/B978-0-12-800128-8.00001-7. PubMed DOI
Eschenmoser A. Etiology of Potentially Primordial Biomolecular Structures: From Vitamin B12 to the Nucleic Acids and an Inquiry into the Chemistry of Life’s Origin: A Retrospective. Angew. Chem. Int. Ed. 2011;50:12412–12472. doi: 10.1002/anie.201103672. PubMed DOI
Boraston A.B., Nurizzo D., Notenboom V., Ducros V., Rose D.R., Kilburn D.G., Davies G.J. Differential Oligosaccharide Recognition by Evolutionarily-Related β-1,4 and β-1,3 Glucan-Binding Modules. J. Mol. Biol. 2002;319:1143–1156. doi: 10.1016/S0022-2836(02)00374-1. PubMed DOI
Guerin D.M., Lascombe M.B., Costabel M., Souchon H., Lamzin V., Beguin P., Alzari P.M. Atomic (0.94 Å) resolution structure of an inverting glycosidase in complex with substrate. J. Mol. Biol. 2002;316:1061–1069. doi: 10.1006/jmbi.2001.5404. PubMed DOI
Merritt E.A., Kuhn P., Sarfaty S., Erbe J.L., Holmes R.K., Hol W.G. The 1.25 Å resolution refinement of the cholera toxin B-pentamer: Evidence of peptide backbone strain at the receptor-binding site. J. Mol. Biol. 1998;282:1043–1059. doi: 10.1006/jmbi.1998.2076. PubMed DOI
Dutzler R., Wang Y.F., Rizkallah P.J., Rosenbusch J.P., Schirmer T. Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure. 1996;4:127–134. doi: 10.1016/S0969-2126(96)00016-0. PubMed DOI
Denker K., Orlik F., Schiffler B., Benz R. Site-directed mutagenesis of the greasy slide aromatic residues within the LamB (maltoporin) channel of Escherichia coli: Effect on ion and maltopentaose transport. J. Mol. Biol. 2005;352:534–550. doi: 10.1016/j.jmb.2005.07.025. PubMed DOI
Robert X., Haser R., Gottschalk T.E., Ratajczak F., Driguez H., Svensson B., Aghajari N. The structure of barley alpha-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: A pair of sugar tongs. Structure. 2003;11:973–984. doi: 10.1016/S0969-2126(03)00151-5. PubMed DOI
Bozonnet S., Jensen M.T., Nielsen M.M., Aghajari N., Jensen M.H., Kramhøft B., Willemoës M., Tranier S., Haser R., Svensson B. The ‘pair of sugar tongs’ site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity. FEBS J. 2007;274:5055–5067. doi: 10.1111/j.1742-4658.2007.06024.x. PubMed DOI
Besombes S., Mazeau K. Molecular dynamics simulations of a guaiacyl β-O-4 lignin model compound: Examination of intramolecular hydrogen bonding and conformational flexibility. Biopolymers. 2004;73:301–315. doi: 10.1002/bip.10587. PubMed DOI
Davis A.P., Wareham R.S. Carbohydrate Recognition through Noncovalent Interactions: A Challenge for Biomimetic and Supramolecular Chemistry. Angew. Chem. Int. Edit. 1999;38:2978–2996. doi: 10.1002/(SICI)1521-3773(19991018)38:20<2978::AID-ANIE2978>3.0.CO;2-P. PubMed DOI
Ferrand Y., Crump M.P., Davis A.P. A Synthetic Lectin Analogue for Biomimetic Disaccharide Recognition. Science. 2007;318:619–622. doi: 10.1126/science.1148735. PubMed DOI
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC
Gabbanini S., Lucchi E., Guidugli F., Matera R., Valgimigli L. Anomeric discrimination and rapid analysis of underivatized lactose, maltose, and sucrose in vegetable matrices by U-HPLC-ESI-MS/MS using porous graphitic carbon. J. Mass. Spectrom. 2010;45:1012–1018. doi: 10.1002/jms.1750. PubMed DOI
Kim O.K., Je J., Baldwin J.W., Kooi S., Pehrsson P.E., Buckley L.J. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J. Am. Chem. Soc. 2003;125:4426–4427. doi: 10.1021/ja029233b. PubMed DOI
Bhoi V.I., Kumar S., Murthy C.N. The self-assembly and aqueous solubilization of [60]fullerene with disaccharides. Carbohyd. Res. 2012;359:120–127. doi: 10.1016/j.carres.2012.07.010. PubMed DOI
Birchall L.S., Roy S., Jayawarna V., Hughes M., Irvine E., Okorogheye G.T., Saudi N., De Santis E., Tuttle T., Edwards A.A., et al. Exploiting CH-π interactions in supramolecular hydrogels of aromatic carbohydrate amphiphiles. Chem. Sci. 2011;2:1349–1355. doi: 10.1039/c0sc00621a. DOI
Nishio M., Hirota M., Umezawa Y. The CH-Pi Interaction: Evidence, Nature, and Consequences. 1st ed. Wiley-VCH; New York, NY, USA: 1998.
Spiwok V., Lipovová P., Skálová T., Buchtelová E., Hašek J., Králová B. Role of CH/π Interactions in Substrate Binding by Escherichia coli β-Galactosidase. Carbohyd. Res. 2004;339:2275–2280. doi: 10.1016/j.carres.2004.06.016. PubMed DOI
Spiwok V., Lipovová P., Skálová T., Vondráčková E., Dohnálek J., Hašek J., Králová B. Modelling of Carbohydrate-Aromatic Interactions: Ab Initio Energetics and Force Field Performance. J. Comput. Aided Mol. Des. 2005;19:887–901. doi: 10.1007/s10822-005-9033-z. PubMed DOI
Kozmon S., Matuška R., Spiwok V., Koča J. Three-Dimensional Potential Energy Surface of Selected Carbohydrates' CH/π Dispersion Interactions Calculated by High-Level Quantum Mechanical Methods. Chem. Eur. J. 2011;17:5680–5690. doi: 10.1002/chem.201002876. PubMed DOI
Kozmon S., Matuška R., Spiwok V., Koča J. Dispersion Interactions of Carbohydrates with Condensate Aromatic Moieties: Theoretical Study on the CH-π Interaction Additive Properties. Phys. Chem. Chem. Phys. 2011;13:14215–14222. doi: 10.1039/c1cp21071h. PubMed DOI
Fernandez-Alonso M.C., Canada F.J., Jimenez-Barbero J., Cuevas G. Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate-aromatic interactions. J. Am. Chem. Soc. 2005;127:7379–7386. doi: 10.1021/ja051020+. PubMed DOI
Sujatha M.S., Sasidhar Y.U., Balaji P.V. Insights into the role of the aromatic residue in galactose-binding sites: MP2/6-311G++** study on galactose- and glucose-aromatic residue analogue complexes. Biochemistry. 2005;44:8554–8562. doi: 10.1021/bi050298b. PubMed DOI
Sujatha M.S., Sasidhar Y.U., Balaji P.V. MP2/6-311++G(d,p) study on galactose–aromatic residue analogue complexes in different position-orientations of the saccharide relative to aromatic residue. J. Mol. Struct. THEOCHEM. 2007;814:11–24. doi: 10.1016/j.theochem.2007.02.032. DOI
Sharma R., McNamara J.P., Raju R.K., Vincent M.A., Hillier I.A., Morgado C.A. The interaction of carbohydrates and amino acids with aromatic systems studied by density functional and semi-empirical molecular orbital calculations with dispersion corrections. Phys. Chem. Chem. Phys. 2008;10:2767–2774. doi: 10.1039/b719764k. PubMed DOI
Raju R.K., Ramraj A., Hillier I.H., Vincent M.A., Burton N.A. Carbohydrate-aromatic π interactions: A test of density functionals and the DFT-D method. Phys. Chem. Chem. Phys. 2009;11:3411–3416. doi: 10.1039/b822877a. PubMed DOI
Tsuzuki S., Uchimaru T., Mikami M. Magnitude and nature of carbohydrate-aromatic interactions: Ab initio calculations of fucose-benzene complex. J. Phys. Chem. B. 2009;113:5617–5621. doi: 10.1021/jp8093726. PubMed DOI
Hobza P., Muller-Dethlefs K. Non-Covalent Interactions: Theory and Experiment. 1st ed. Royal Society of Chemistry; Cambridge, UK: 2009.
Phipps M.J., Fox T., Tautermann C.S., Skylaris C.K. Energy decomposition analysis approaches and their evaluation on prototypical protein-drug interaction patterns. Chem. Soc. Rev. 2015;44:3177–3211. doi: 10.1039/C4CS00375F. PubMed DOI
Screen J., Stanca-Kaposta E.C., Gamblin D.P., Liu B., Macleod N.A., Snoek L.C., Davis B.G., Simons J.P. IR-spectral signatures of aromatic-sugar complexes: Probing carbohydrate-protein interactions. Angew. Chem. Int. Ed. 2007;46:3644–3648. doi: 10.1002/anie.200605116. PubMed DOI
Wohlert J., Schnupf U., Brady J.W. Free energy surfaces for the interaction of d-glucose with planar aromatic groups in aqueous solution. J. Chem. Phys. 2010;133:155103. doi: 10.1063/1.3496997. PubMed DOI PMC
Mareška V., Tvaroška I., Králová B., Spiwok V. Molecular Simulations of Hevein/(GlcNAc)3 Complex with Weakened OH/O and CH/π Hydrogen Bonds: Implications for their Role in Complex Stabilization. Carbohyd. Res. 2015;408:1–7. doi: 10.1016/j.carres.2015.02.012. PubMed DOI
Colombo G., Meli M., Cañada J., Asensio J.L., Jimenez-Barbero J. A dynamic perspective on the molecular recognition of chitooligosaccharide ligands by hevein domains. Carbohyd. Res. 2005;340:1039–1049. doi: 10.1016/j.carres.2005.01.044. PubMed DOI
Asensio J.L., Siebert H.C., von Der Lieth C.W., Laynez J., Bruix M., Soedjanaamadja U.M., Beintema J.J., Cañada F.J., Gabius H.J., Jiménez-Barbero J. NMR investigations of protein-carbohydrate interactions: Studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N′,N′′-triacetylchitotriose. Proteins. 2000;40:218–236. doi: 10.1002/(SICI)1097-0134(20000801)40:23.0.CO;2-P. PubMed DOI
Černý J., Kabeláč M., Hobza P. Double-helical→ladder structural transition in the B-DNA is induced by a loss of dispersion energy. J. Am. Chem. Soc. 2008;130:16055–16059. doi: 10.1021/ja805428q. PubMed DOI
Černý J., Vondrášek J., Hobza P. Loss of dispersion energy changes the stability and folding/unfolding equilibrium of the Trp-cage protein. J. Phys. Chem. B. 2009;113:5657–5660. doi: 10.1021/jp9004746. PubMed DOI
Chen W., Enck S., Price J.L., Powers D.L., Powers E.T., Wong C.H., Dyson H.J., Kelly J.W. Structural and energetic basis of carbohydrate-aromatic packing interactions in proteins. J. Am. Chem. Soc. 2013;135:9877–9884. doi: 10.1021/ja4040472. PubMed DOI PMC
Santana A.G., Jiménez-Moreno E., Gómez A.M., Corzana F., González C., Jiménez-Oses G., Jiménez-Barbero J., Asensio J.L. A dynamic combinatorial approach for the analysis of weak carbohydrate/aromatic complexes: Dissecting facial selectivity in CH/π stacking interactions. J. Am. Chem. Soc. 2013;135:3347–3350. doi: 10.1021/ja3120218. PubMed DOI
Jiménez-Moreno E., Gómez A.M., Bastida A., Corzana F., Jiménez-Oses G., Jiménez-Barbero J., Asensio J.L. Modulating weak interactions for molecular recognition: A dynamic combinatorial analysis for assessing the contribution of electrostatics to the stability of CH-π bonds in water. Angew. Chem. Int. Ed. 2015;54:4344–4348. doi: 10.1002/anie.201411733. PubMed DOI
Jiménez-Moreno E., Jiménez-Osés G., Gómez A.M., Santana A.G., Corzana F., Bastida A., Jiménez-Barbero J., Asensio J.L. A thorough experimental study of CH/π interactions in water: Quantitative structure-stability relationships for carbohydrate/aromatic complexes. Chem. Sci. 2015;6:6076–6085. doi: 10.1039/C5SC02108A. PubMed DOI PMC
Murray A.N., Chen W., Antonopoulos A., Hanson S.R., Wiseman R.L., Dell A., Haslam S.M., Powers D.L., Powers E.T., Kelly J.W. Enhanced aromatic sequons increase oligosaccharyltransferase glycosylation efficiency and glycan homogeneity. Chem. Biol. 2015;22:1052–1062. doi: 10.1016/j.chembiol.2015.06.017. PubMed DOI PMC
Wyss D.F., Choi J.S., Li J., Knoppers M.H., Willis K.J., Arulanandam A.R., Smolyar A., Reinherz E.L., Wagner G. Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science. 1995;269:1273–1278. doi: 10.1126/science.7544493. PubMed DOI
Doxey A.C., Cheng Z., Moffatt B.A., McConkey B.J. Structural motif screening reveals a novel, conserved carbohydrate-binding surface in the pathogenesis-related protein PR-5d. BMC Struct. Biol. 2010;10:23. doi: 10.1186/1472-6807-10-23. PubMed DOI PMC
Kerzmann A., Fuhrmann J., Kohlbacher O., Neumann D. BALLDock/SLICK: A new method for protein-carbohydrate docking. J. Chem. Inf. Model. 2008;48:1616–1625. doi: 10.1021/ci800103u. PubMed DOI
Atomistic simulation of carbohydrate-protein complex formation: Hevein-32 domain