Loss of dispersion energy changes the stability and folding/unfolding equilibrium of the Trp-cage protein
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19444987
DOI
10.1021/jp9004746
Knihovny.cz E-zdroje
- MeSH
- chemické modely MeSH
- konformace proteinů MeSH
- kvantová teorie MeSH
- molekulární modely MeSH
- peptidy chemie MeSH
- počítačová simulace MeSH
- sbalování proteinů MeSH
- sekundární struktura proteinů MeSH
- stabilita proteinů MeSH
- termodynamika * MeSH
- voda chemie MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peptidy MeSH
- Trp-cage peptide MeSH Prohlížeč
- voda MeSH
The structure of proteins as well as their folding/unfolding equilibrium are commonly attributed to H-bonding and hydrophobic interactions. We have used the molecular dynamic simulations in an explicit water environment based on the standard empirical potential as well as more accurately (and thus also more reliably) on the QM/MM potential. The simulations where the dispersion term was suppressed have led to a substantial change of the tryptophan-cage protein structure (unfolded structure). This structure cannot fold without the dispersion energy term, whereas, if it is covered fully, the system finds its native structure relatively quickly. This implies that after such physical factors as temperature and pH, the dispersion energy is an important factor in protein structure determination as well as in the protein folding/unfolding equilibrium. The loss of dispersion also affected the R-helical structure. On the other hand, weakening the electrostatic interactions (and thus H-bonding) affected the R-helical structure only to a minor extent.
Citace poskytuje Crossref.org
CH/π Interactions in Carbohydrate Recognition