Redesigning protein cavities as a strategy for increasing affinity in protein-protein interaction: interferon- γ receptor 1 as a model

. 2015 ; 2015 () : 716945. [epub] 20150428

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26060819

Combining computational and experimental tools, we present a new strategy for designing high affinity variants of a binding protein. The affinity is increased by mutating residues not at the interface, but at positions lining internal cavities of one of the interacting molecules. Filling the cavities lowers flexibility of the binding protein, possibly reducing entropic penalty of binding. The approach was tested using the interferon-γ receptor 1 (IFNγR1) complex with IFNγ as a model. Mutations were selected from 52 amino acid positions lining the IFNγR1 internal cavities by using a protocol based on FoldX prediction of free energy changes. The final four mutations filling the IFNγR1 cavities and potentially improving the affinity to IFNγ were expressed, purified, and refolded, and their affinity towards IFNγ was measured by SPR. While individual cavity mutations yielded receptor constructs exhibiting only slight increase of affinity compared to WT, combinations of these mutations with previously characterized variant N96W led to a significant sevenfold increase. The affinity increase in the high affinity receptor variant N96W+V35L is linked to the restriction of its molecular fluctuations in the unbound state. The results demonstrate that mutating cavity residues is a viable strategy for designing protein variants with increased affinity.

Zobrazit více v PubMed

Kastritis P. L., Bonvin A. M. J. J. Molecular origins of binding affinity: seeking the Archimedean point. Current Opinion in Structural Biology. 2013;23(6):868–877. doi: 10.1016/j.sbi.2013.07.001. PubMed DOI

Grünberg R., Nilges M., Leckner J. Flexibility and conformational entropy in protein-protein binding. Structure. 2006;14(4):683–693. doi: 10.1016/j.str.2006.01.014. PubMed DOI

Bhat T. N., Bentley G. A., Boulot G., et al. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(3):1089–1093. doi: 10.1073/pnas.91.3.1089. PubMed DOI PMC

Urakubo Y., Ikura T., Ito N. Crystal structural analysis of protein-protein interactions drastically destabilized by a single mutation. Protein Science. 2008;17(6):1055–1065. doi: 10.1110/ps.073322508. PubMed DOI PMC

Frederick K. K., Marlow M. S., Valentine K. G., Wand A. J. Conformational entropy in molecular recognition by proteins. Nature. 2007;448(7151):325–329. doi: 10.1038/nature05959. PubMed DOI PMC

Marlow M. S., Dogan J., Frederick K. K., Valentine K. G., Wand A. J. The role of conformational entropy in molecular recognition by calmodulin. Nature Chemical Biology. 2010;6(5):352–358. doi: 10.1038/nchembio.347. PubMed DOI PMC

Wand A. J. The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation. Current Opinion in Structural Biology. 2013;23(1):75–81. doi: 10.1016/j.sbi.2012.11.005. PubMed DOI PMC

Schneider B., Gelly J. C., de Brevern A. G., Cerny J. Local dynamics of proteins and DNA evaluated from crystallographic B factors. Acta Crystallographica D: Biological Crystallography. 2014;70, part 9:2413–2419. doi: 10.1107/S1399004714014631. PubMed DOI PMC

Wang C., Schueler-Furman O., Baker D. Improved side-chain modeling for protein-protein docking. Protein Science. 2005;14(5):1328–1339. doi: 10.1110/ps.041222905. PubMed DOI PMC

Cole C., Warwicker J. Side-chain conformational entropy at protein-protein interfaces. Protein Science. 2002;11(12):2860–2870. doi: 10.1110/ps.0222702. PubMed DOI PMC

Bueno M., Cremades N., Neira J. L., Sancho J. Filling small, empty protein cavities: structural and energetic consequences. Journal of Molecular Biology. 2006;358(3):701–712. doi: 10.1016/j.jmb.2006.02.060. PubMed DOI

Ohmura T., Ueda T., Ootsuka K., Saito M., Imoto T. Stabilization of hen egg white lysozyme by a cavity-filling mutation. Protein Science. 2001;10(2):313–320. doi: 10.1110/ps.37401. PubMed DOI PMC

Tanaka M., Chon H., Angkawidjaja C., Koga Y., Takano K., Kanaya S. Protein core adaptability: crystal structures of the cavity-filling variants of Escherichia coli rnase HI. Protein and Peptide Letters. 2010;17(9):1163–1169. doi: 10.2174/092986610791760342. PubMed DOI

Koudelakova T., Chaloupkova R., Brezovsky J., et al. Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel. Angewandte Chemie—International Edition. 2013;52(7):1959–1963. doi: 10.1002/anie.201206708. PubMed DOI

Atwell S., Ultsch M., de Vos A. M., Wells J. A. Structural plasticity in a remodeled protein-protein interface. Science. 1997;278(5340):1125–1128. doi: 10.1126/science.278.5340.1125. PubMed DOI

Kawasaki Y., Chufan E. E., Lafont V., et al. How much binding affinity can be gained by filling a cavity? Chemical Biology and Drug Design. 2010;75(2):143–151. doi: 10.1111/j.1747-0285.2009.00921.x. PubMed DOI PMC

Morellato-Castillo L., Acharya P., Combes O., et al. Interfacial cavity filling to optimize CD4-mimetic miniprotein interactions with HIV-1 surface glycoprotein. Journal of Medicinal Chemistry. 2013;56(12):5033–5047. doi: 10.1021/jm4002988. PubMed DOI PMC

Černý J., Vondrášek J., Hobza P. Loss of dispersion energy changes the stability and folding/unfolding equilibrium of the trp-cage protein. The Journal of Physical Chemistry B. 2009;113(16):5657–5660. doi: 10.1021/jp9004746. PubMed DOI

Thiel D. J., Le Du M.-H., Walter R. L., et al. Observation of an unexpected third receptor-molecule in the crystal structure of human interferon-γ receptor complex. Structure. 2000;8(9):927–936. doi: 10.1016/s0969-2126(00)00184-2. PubMed DOI

Randal M., Kossiakoff A. A. Crystallization and preliminary X-ray analysis of a 1 : 1 complex between a designed monomeric interferon-gamma and its soluble receptor. Protein Science. 1998;7(4):1057–1060. PubMed PMC

Mikulecký P., Černý J., Biedermannová L., et al. Increasing affinity of interferon-γ receptor 1 to interferon-γ by computer-aided design. BioMed Research International. 2013;2013:12. doi: 10.1155/2013/752514.752514 PubMed DOI PMC

Schroder K., Hertzog P. J., Ravasi T., Hume D. A. Interferon-gamma: an overview of signals, mechanisms and functions. Journal of Leukocyte Biology. 2004;75(2):163–189. doi: 10.1189/jlb.0603252. PubMed DOI

Borden E. C., Sen G. C., Uze G., et al. Interferons at age 50: past, current and future impact on biomedicine. Nature Reviews Drug Discovery. 2007;6(12):975–990. doi: 10.1038/nrd2422. PubMed DOI PMC

Schymkowitz J., Borg J., Stricher F., Nys R., Rousseau F., Serrano L. The FoldX web server: an online force field. Nucleic Acids Research. 2005;33(2):W382–W388. doi: 10.1093/nar/gki387. PubMed DOI PMC

Landar A., Curry B., Parker M. H., et al. Design, characterization, and structure of a biologically active single-chain mutant of human IFN-γ . Journal of Molecular Biology. 2000;299(1):169–179. doi: 10.1006/jmbi.2000.3734. PubMed DOI

Voss N. R., Gerstein M. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Research. 2010;38(2):W555–W562. doi: 10.1093/nar/gkq395. PubMed DOI PMC

Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics. 1996;14(1):33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Webb B., Sali A. Protein structure modeling with MODELLER. Methods in Molecular Biology. 2014;1137:1–15. PubMed

Hess B., Kutzner C., van der Spoel D., Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation. 2008;4(3):435–447. doi: 10.1021/ct700301q. PubMed DOI

Eastman P., Pande V. S. OpenMM: a hardware-independent framework for molecular simulations. Computing in Science & Engineering. 2010;12(4):34–39. PubMed PMC

Friedrichs M. S., Eastman P., Vaidyanathan V., et al. Accelerating molecular dynamic simulation on graphics processing units. Journal of Computational Chemistry. 2009;30(6):864–872. doi: 10.1002/jcc.21209. PubMed DOI PMC

Kollman P. A. Advances and continuing challenges in achieving realistic and predictive simulations of the properties of organic and biological molecules. Accounts of Chemical Research. 1996;29(10):461–469. doi: 10.1021/ar9500675. DOI

Bohm G., Muhr R., Jaenicke R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Engineering. 1992;5(3):191–195. PubMed

Sviridova E., Bumba L., Rezacova P., et al. Crystallization and preliminary crystallographic characterization of the iron-regulated outer membrane lipoprotein FrpD from Neisseria meningitidis . Acta Crystallographica Section F: Structural Biology and Crystallization Communications. 2010;66, part 9:1119–1123. doi: 10.1107/S174430911003215X. PubMed DOI PMC

Fountoulakis M., Gentz R. Effect of glycosylation on properties of soluble interferon gamma receptors produced in prokaryotic and eukaryotic expression systems. Nature Biotechnology. 1992;10(10):1143–1147. doi: 10.1038/nbt1092-1143. PubMed DOI

Sengupta T., Tsutsui Y., Wintrode P. L. Local and global effects of a cavity filling mutation in a metastable serpin. Biochemistry. 2009;48(34):8233–8240. doi: 10.1021/bi900342d. PubMed DOI PMC

Chen T. S., Keating A. E. Designing specific protein-protein interactions using computation, experimental library screening, or integrated methods. Protein Science. 2012;21(7):949–963. doi: 10.1002/pro.2096. PubMed DOI PMC

Saesen E., Sarrazin S., Laguri C., et al. Insights into the mechanism by which interferon-γ basic amino acid clusters mediate protein binding to heparan sulfate. Journal of the American Chemical Society. 2013;135(25):9384–9390. doi: 10.1021/ja4000867. PubMed DOI

Okonechnikov K., Golosova O., Fursov M., UGENE Team Unipro ugene: a unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166–1167. PubMed

Sherry S. T., Ward M.-H., Kholodov M., et al. DbSNP: the NCBI database of genetic variation. Nucleic Acids Research. 2001;29(1):308–311. doi: 10.1093/nar/29.1.308. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Crystal structure of human interferon-γ receptor 2 reveals the structural basis for receptor specificity

. 2016 Sep ; 72 (Pt 9) : 1017-25. [epub] 20160818

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace