Influence of Trp flipping on carbohydrate binding in lectins. An example on Aleuria aurantia lectin AAL

. 2017 ; 12 (12) : e0189375. [epub] 20171212

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29232414

Protein-carbohydrate interactions are very often mediated by the stacking CH-π interactions involving the side chains of aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) or phenylalanine (Phe). Especially suitable for stacking is the Trp residue. Analysis of the PDB database shows Trp stacking for 265 carbohydrate or carbohydrate like ligands in 5 208 Trp containing motives. An appropriate model system to study such an interaction is the AAL lectin family where the stacking interactions play a crucial role and are thought to be a driving force for carbohydrate binding. In this study we present data showing a novel finding in the stacking interaction of the AAL Trp side chain with the carbohydrate. High resolution X-ray structure of the AAL lectin from Aleuria aurantia with α-methyl-l-fucoside ligand shows two possible Trp side chain conformations with the same occupation in electron density. The in silico data shows that the conformation of the Trp side chain does not influence the interaction energy despite the fact that each conformation creates interactions with different carbohydrate CH groups. Moreover, the PDB data search shows that the conformations are almost equally distributed across all Trp-carbohydrate complexes, which would suggest no substantial preference for one conformation over another.

Zobrazit více v PubMed

Wimmerova M, Mitchell E, Sanchez JF, Gautier C, Imberty A. Crystal structure of fungal lectin—Six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J Biol Chem. 2003;278(29):27059–67. doi: 10.1074/jbc.M302642200 PubMed DOI

Olausson J, Tibell L, Jonsson BH, Pahlsson P. Detection of a high affinity binding site in recombinant Aleuria aurantia lectin. Glycoconjugate J. 2008;25(8):753–62. doi: 10.1007/s10719-008-9135-7 PubMed DOI

Romano PR, Mackay A, Vong M, deSa J, Lamontagne A, Comunale MA, et al. Development of recombinant Aleuria aurantia lectins with altered binding specificities to fucosylated glycans. Biochem Biophys Res Commun. 2011;414(1):84–9. doi: 10.1016/j.bbrc.2011.09.027 PubMed DOI PMC

Houser J, Komarek J, Cioci G, Varrot A, Imberty A, Wimmerova M. Structural insights into Aspergillus fumigatus lectin specificity: AFL binding sites are functionally non-equivalent. Acta Crystallogr D. 2015;71:442–53. doi: 10.1107/S1399004714026595 PubMed DOI

Matsumura K, Higashida K, Ishida H, Hata Y, Yamamoto K, Shigeta M, et al. Carbohydrate binding specificity of a fucose-specific lectin from aspergillus oryzae—A novel probe for core fucose. J Biol Chem. 2007;282(21):15700–8. doi: 10.1074/jbc.M701195200 PubMed DOI

Topin J, Arnaud J, Sarkar A, Audfray A, Gillon E, Perez S, et al. Deciphering the Glycan Preference of Bacterial Lectins by Glycan Array and Molecular Docking with Validation by Microcalorimetry and Crystallography. Plos One. 2013;8(8). doi: 10.1371/journal.pone.0071149 PubMed DOI PMC

Dingjan T, Imberty A, Perez S, Yuriev E, Ramsland PA. Molecular Simulations of Carbohydrates with a Fucose-Binding Burkholderia ambifaria Lectin Suggest Modulation by Surface Residues Outside the Fucose-Binding Pocket. Front Pharmacol. 2017;8 doi: 10.3389/fphar.2017.00393 PubMed DOI PMC

Brandl M, Weiss MS, Jabs A, Suhnel J, Hilgenfeld R. C-H ⋯ p-interactions in proteins. J Mol Biol. 2001;307(1):357–77. doi: 10.1006/jmbi.2000.4473 PubMed DOI

Sharma R, McNamara JP, Raju RK, Vincent MA, Hillier IH, Morgado CA. The interaction of carbohydrates and amino acids with aromatic systems studied by density functional and semi-empirical molecular orbital calculations with dispersion corrections. PCCP. 2008;10(19):2767–74. doi: 10.1039/b719764k PubMed DOI

Zhao Y, Li J, Gu H, Wei DQ, Xu YC, Fu W, et al. Conformational Preferences of pi-pi Stacking Between Ligand and Protein, Analysis Derived from Crystal Structure Data Geometric Preference of pi-pi Interaction. Interdiscip Sci. 2015;7(3):211–20. doi: 10.1007/s12539-015-0263-z PubMed DOI

Weis WI, Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem. 1996;65:441–73. doi: 10.1146/annurev.bi.65.070196.002301 PubMed DOI

Chen WT, Enck S, Price JL, Powers DL, Powers ET, Wong CH, et al. Structural and Energetic Basis of Carbohydrate-Aromatic Packing Interactions in Proteins. J Am Chem Soc. 2013;135(26):9877–84. doi: 10.1021/ja4040472 PubMed DOI PMC

Spiwok V. CH/pi Interactions in Carbohydrate Recognition. Molecules. 2017;22(7). doi: 10.3390/molecules22071038 PubMed DOI PMC

Hudson KL, Bartlett GJ, Diehl RC, Agirre J, Gallagher T, Kiessling LL, et al. Carbohydrate-Aromatic Interactions in Proteins. J Am Chem Soc. 2015;137(48):15152–60. doi: 10.1021/jacs.5b08424 PubMed DOI PMC

Kostlanova N, Mitchell EP, Lortat-Jacob H, Oscarson S, Lahmann M, Gilboa-Garber N, et al. The fucose-binding lectin from Ralstonia solanacearum—A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J Biol Chem. 2005;280(30):27839–49. doi: 10.1074/jbc.M505184200 PubMed DOI

Wimmerova M, Kozmon S, Necasova I, Mishra SK, Komarek J, Koca J. Stacking Interactions between Carbohydrate and Protein Quantified by Combination of Theoretical and Experimental Methods. Plos One. 2012;7(10). doi: 10.1371/journal.pone.0046032 PubMed DOI PMC

Bekale L, Agudelo D, Tajmir-Riahi HA. Effect of polymer molecular weight on chitosan-protein interaction. Colloid Surface B. 2015;125:309–17. doi: 10.1016/j.colsurfb.2014.11.037 PubMed DOI

Kabsch W. Xds. Acta Crystallogr D. 2010;66:125–32. doi: 10.1107/S0907444909047337 PubMed DOI PMC

Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D. 2011;67:235–42. doi: 10.1107/S0907444910045749 PubMed DOI PMC

Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr D. 2010;66:22–5. doi: 10.1107/S0907444909042589 PubMed DOI

Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D. 1997;53:240–55. doi: 10.1107/S0907444996012255 PubMed DOI

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D. 2010;66:486–501. doi: 10.1107/S0907444910007493 PubMed DOI PMC

Grimme S, Ehrlich S, Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J Comput Chem. 2011;32(7):1456–65. doi: 10.1002/jcc.21759 PubMed DOI

Becke AD. Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Phys Rev A. 1988;38(6):3098–100. PubMed

Perdew JP. Density-Functional Approximation for the Correlation-Energy of the Inhomogeneous Electron-Gas. Phys Rev B. 1986;33(12):8822–4. PubMed

Ahlrichs R, Bär M, Baron H, Bauernschmitt R, Böcker S, Crawford N, et al. TURBOMOLE V7.0. University of Karlsruhe and Forschungszentrum Karlsruhe GmbH 1989–2007,TURBOMOLE GmbH since 2007; 2015.

Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C. Electronic-Structure Calculations on Workstation Computers—the Program System Turbomole. Chem Phys Lett. 1989;162(3):165–9.

Eichkorn K, Treutler O, Ohm H, Haser M, Ahlrichs R. Auxiliary Basis-Sets to Approximate Coulomb Potentials (Vol 240, Pg 283, 1995). Chem Phys Lett. 1995;242(6):652–60. doi: 10.1016/0009-2614(95)00838-U DOI

Eichkorn K, Weigend F, Treutler O, Ahlrichs R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Acc. 1997;97(1–4):119–24. doi: 10.1007/s002140050244 DOI

Sierka M, Hogekamp A, Ahlrichs R. Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation. J Chem Phys. 2003;118(20):9136–48. doi: 10.1063/1.1567253 DOI

Boys SF, Bernardi F. Calculation of Small Molecular Interactions by Differences of Separate Total Energies—Some Procedures with Reduced Errors. Mol Phys. 1970;19(4):553-&.

Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (Reprinted from Molecular Physics, vol 19, pg 553–566, 1970). Mol Phys. 2002;100(1):65–73.

Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins: Struct Funct Bioinform. 2006;65(3):712–25. doi: 10.1002/prot.21123 PubMed DOI PMC

Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL, et al. GLYCAM06: A generalizable Biomolecular force field. Carbohydrates. J Comput Chem. 2008;29(4):622–55. doi: 10.1002/jcc.20820 PubMed DOI PMC

Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, et al. AMBER 14. University of California, San Francisco; 2014.

Kulhánek P, Fuxreiter M, Štěpán J, Koča J, Mones L, Střelcová Z, et al. PMFLib—A Toolkit for Free Energy Calculations, https://lcc.ncbr.muni.cz/whitezone/development/pmflib/index.html. Masaryk University; 2013.

Grossfield A. WHAM: the weighted histogram analysis method. 2.0.9 ed2016.

Fujihashi M, Peapus DH, Nakajima E, Yamada T, Saito J, Kita A, et al. X-ray crystallographic characterization and phasing of a fucose-specific lectin from Aleuria aurantia. Acta Crystallogr D. 2003;59:378–80. doi: 10.1107/S0907444902022175 PubMed DOI

Sehnal D, Pravda L, Varekova RS, Ionescu CM, Koca J. PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank. Nucleic Acids Res. 2015;43(W1):W383–W8. doi: 10.1093/nar/gkv561 PubMed DOI PMC

Kozmon S, Matuska R, Spiwok V, Koca J. Three-Dimensional Potential Energy Surface of Selected Carbohydrates’ CH/p Dispersion Interactions Calculated by High-Level Quantum Mechanical Methods. Chem Eur J. 2011;17(20):5680–90. doi: 10.1002/chem.201002876 PubMed DOI

Kozmon S, Matuska R, Spiwok V, Koca J. Dispersion interactions of carbohydrates with condensate aromatic moieties: Theoretical study on the CH-pi interaction additive properties. PCCP. 2011;13(31):14215–22. doi: 10.1039/c1cp21071h PubMed DOI

Norton P, Comunale MA, Herrera H, Wang MJ, Houser J, Wimmerova M, et al. Development and application of a novel recombinant Aleuria aurantia lectin with enhanced core fucose binding for identification of glycoprotein biomarkers of hepatocellular carcinoma. Proteomics. 2016;16(24):3126–36. doi: 10.1002/pmic.201600064 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...