Stacking interactions between carbohydrate and protein quantified by combination of theoretical and experimental methods
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23056230
PubMed Central
PMC3466270
DOI
10.1371/journal.pone.0046032
PII: PONE-D-12-14811
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny aromatické chemie genetika metabolismus MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- fukosa chemie metabolismus MeSH
- konformace proteinů MeSH
- konformace sacharidů MeSH
- krystalografie rentgenová MeSH
- lektiny chemie genetika metabolismus MeSH
- molekulární modely * MeSH
- mutace MeSH
- proteiny chemie genetika metabolismus MeSH
- Ralstonia solanacearum genetika metabolismus MeSH
- sacharidy chemie MeSH
- sekundární struktura proteinů MeSH
- terciární struktura proteinů MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny aromatické MeSH
- bakteriální proteiny MeSH
- fukosa MeSH
- lektiny MeSH
- proteiny MeSH
- sacharidy MeSH
Carbohydrate-receptor interactions are an integral part of biological events. They play an important role in many cellular processes, such as cell-cell adhesion, cell differentiation and in-cell signaling. Carbohydrates can interact with a receptor by using several types of intermolecular interactions. One of the most important is the interaction of a carbohydrate's apolar part with aromatic amino acid residues, known as dispersion interaction or CH/π interaction. In the study presented here, we attempted for the first time to quantify how the CH/π interaction contributes to a more general carbohydrate-protein interaction. We used a combined experimental approach, creating single and double point mutants with high level computational methods, and applied both to Ralstonia solanacearum (RSL) lectin complexes with α-L-Me-fucoside. Experimentally measured binding affinities were compared with computed carbohydrate-aromatic amino acid residue interaction energies. Experimental binding affinities for the RSL wild type, phenylalanine and alanine mutants were -8.5, -7.1 and -4.1 kcal x mol(-1), respectively. These affinities agree with the computed dispersion interaction energy between carbohydrate and aromatic amino acid residues for RSL wild type and phenylalanine, with values -8.8, -7.9 kcal x mol(-1), excluding the alanine mutant where the interaction energy was -0.9 kcal x mol(-1). Molecular dynamics simulations show that discrepancy can be caused by creation of a new hydrogen bond between the α-L-Me-fucoside and RSL. Observed results suggest that in this and similar cases the carbohydrate-receptor interaction can be driven mainly by a dispersion interaction.
Zobrazit více v PubMed
Dwek RA (1996) Glycobiology: Toward understanding the function of sugars. Chem Rev 96: 683–720. PubMed
Haltiwanger RS, Lowe JB (2004) Role of glycosylation indevelopment. Annu Rev Biochem 73: 491–537. PubMed
Dreitlein WB, Maratos J, Brocavich J (2001) Zanamivir and oseltamivir: Two new options for the treatment and prevention of influenza. Clin Ther 23: 327–355. PubMed
Karlsson KA (1989) Animal Glycosphingolipids as Membrane Attachment Sites for Bacteria. Annu Rev Biochem 58: 309–350. PubMed
Neufeld EF (1991) Lysosomal Storage Diseases. Annu Rev Biochem 60: 257–280. PubMed
Campbell BJ, Yu LG, Rhodes JM (2001) Altered glycosylation in inflammatory bowel disease: A possible role in cancer development. Glycoconjugate J 18: 851–858. PubMed
Brown GD, Gordon S (2001) Immune recognition - A new receptor for beta-glucans. Nature 413: 36–37. PubMed
Cobb BA, Kasper DL (2005) Coming of age: carbohydrates and immunity. Eur J Immunol 35: 352–356. PubMed
Cerny J, Hobza P (2007) Non-covalent interactions in biomacromolecules. PCCP 9: 5291–5303. PubMed
Weiss MS, Brandl M, Suhnel J, Pal D, Hilgenfeld R (2001) More hydrogen bonds for the (structural) biologist. Trends Biochem Sci 26: 521–523. PubMed
Raju RK, Ramraj A, Vincent MA, Hillier IH, Burton NA (2008) Carbohydrate-protein recognition probed by density functional theory and ab initio calculations including dispersive interactions. PCCP 10: 6500–6508. PubMed
Tsuzuki S, Uchimaru T, Mikami M (2009) Magnitude and Nature of Carbohydrate-Aromatic Interactions: Ab Initio Calculations of Fucose-Benzene Complex. J Phys Chem B 113: 5617–5621. PubMed
Weis WI, Drickamer K (1996) Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 65: 441–473. PubMed
Bernardi A, Arosio D, Potenza D, Sanchez-Medina I, Mari S, et al. (2004) Intramolecular carbohydrate-aromatic interactions and intermolecular van der Waals interactions enhance the molecular recognition ability of GMI glycomimetics for cholera toxin. Chem Eur J 10: 4395–4406. PubMed
Jimenez-Barbero J, Canada FJ, Cuevas G, Asensio JL, Aboitiz N, et al. (2006) Protein-carbohydrate interactions: A combined theoretical and NMR experimental approach on carbohydrate-aromatic interactions and on pyranose ring distortion. Nmr Spectroscopy and Computer Modeling of Carbohydrates: Recent Advances 930: 60–80.
Spiwok V, Lipovova P, Skalova T, Buchtelova E, Hasek J, et al. (2004) Role of CH/π interactions in substrate binding by Escherichia coli beta-galactosidase. Carbohydr Res 339: 2275–2280. PubMed
Takahashi O, Kohno Y, Nishio M (2010) Relevance of Weak Hydrogen Bonds in the Conformation of Organic Compounds and Bioconjugates: Evidence from Recent Experimental Data and High-Level ab Initio MO Calculations. Chem Rev 110: 6049–6076. PubMed
Brandl M, Weiss MS, Jabs A, Suhnel J, Hilgenfeld R (2001) C-H ··· π-interactions in proteins. J Mol Biol 307: 357–377. PubMed
Manikandan K, Ramakumar S (2004) The occurrence of C-H ··· O hydrogen bonds in alpha-helices and helix termini in globular proteins. Proteins: Struct Funct Bioinform 56: 768–781. PubMed
Scheiner S, Kar T, Gu YL (2001) Strength of the (CH)-H-alpha ··· O hydrogen bond of amino acid residues. J Biol Chem 276: 9832–9837. PubMed
Sharma R, McNamara JP, Raju RK, Vincent MA, Hillier IH, et al. (2008) The interaction of carbohydrates and amino acids with aromatic systems studied by density functional and semi-empirical molecular orbital calculations with dispersion corrections. PCCP 10: 2767–2774. PubMed
Sujatha MS, Sasidhar YU, Balaj PV (2007) MP2/6–311++G(d,p) study on galactose-aromatic residue analog complexes in different position-orientations of the saccharide relative to aromatic residue. Journal of Molecular Structure-Theochem 814: 11–24.
Fernandez MD, Canada FJ, Jimenez-Barbero J, Cuevas G (2005) Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate-aromatic interactions. J Am Chem Soc 127: 7379–7386. PubMed
Jimenez-Barbero J, Arda A, Canada FJ, Nativi C, Francesconi O, et al. (2011) Chiral Diaminopyrrolic Receptors for Selective Recognition of Mannosides, Part 2: A 3D View of the Recognition Modes by X-ray, NMR Spectroscopy, and Molecular Modeling. Chem Eur J 17: 4821–4829. PubMed
Jimenez-Barbero J, Canada FJ, Asensio JL, Aboitiz N, Vidal P, et al. (2006) Hevein domains: An attractive model to study carbohydrate-protein interactions, at atomic resolution. Advances in Carbohydrate Chemistry and Biochemistry, Vol 60 60: 303–354. PubMed
Ramirez-Gualito K, Alonso-Rios R, Quiroz-Garcia B, Rojas-Aguilar A, Diaz D, et al. (2009) Enthalpic Nature of the CH/π Interaction Involved in the Recognition of Carbohydrates by Aromatic Compounds, Confirmed by a Novel Interplay of NMR, Calorimetry, and Theoretical Calculations. J Am Chem Soc 131: 18129–18138. PubMed
Ramirez-Gualito K, Larionova M, Spengler I, Nogueiras C, Quijano L, et al. (2010) A C-Glycosylflavone from Piper ossanum, a Compound Conformationally Controlled by CH/π and Other Weak Intramolecular Interactions. J Nat Prod 73: 1623–1627. PubMed
Terraneo G, Potenza D, Canales A, Jimenez-Barbero J, Baldridge KK, et al. (2007) A simple model system for the study of carbohydrate-aromatic interactions. J Am Chem Soc 129: 2890–2900. PubMed
Cutfield JF, Patrick WM, Nakatani Y, Cutfield SM, Sharpe ML, et al. (2010) Carbohydrate binding sites in Candida albicans exo-beta-1,3-glucanase and the role of the Phe-Phe ‘clamp’ at the active site entrance. FEBS J 277: 4549–4561. PubMed
Maresca M, Derghal A, Carravagna C, Dudin S, Fantini J (2008) Controlled aggregation of adenine by sugars: physicochemical studies, molecular modelling simulations of sugar-aromatic CH-π stacking interactions, and biological significance. PCCP 10: 2792–2800. PubMed
Su Z, Cocinero EJ, Stanca-Kaposta EC, Davis BG, Simons JP (2009) Carbohydrate-aromatic interactions: A computational and IR spectroscopic investigation of the complex, methyl alpha-L-fucopyranoside center dot toluene, isolated in the gas phase. Chem Phys Lett 471: 17–21.
Balaji PV, Kumari M, Sunoj RB (2011) Quantification of binding affinities of essential sugars with a tryptophan analogue and the ubiquitous role of C-H ··· π interactions. PCCP 13: 6517–6530. PubMed
Kumari M, Balaji PV, Sunoj RB (2011) Quantification of binding affinities of essential sugars with a tryptophan analogue and the ubiquitous role of C-Hπ interactions. PCCP 13: 6517–6530. PubMed
Grabowski SJ, Lipkowski P (2011) Characteristics of X-H ··· π Interactions: Ab Initio and QTAIM Studies. J Phys Chem A 115: 4765–4773. PubMed
Kozmon S, Matuska R, Spiwok V, Koca J (2011) Three-Dimensional Potential Energy Surface of Selected Carbohydrates' CH/π Dispersion Interactions Calculated by High-Level Quantum Mechanical Methods. Chem Eur J 17: 5680–5690. PubMed
Kumar RM, Elango M, Subramanian V (2010) Carbohydrate-Aromatic Interactions: The Role of Curvature on XH ··· π Interactions. J Phys Chem A 114: 4313–4324. PubMed
Pitonak M, Riley KE, Neogrady P, Hobza P (2008) Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer. ChemPhysChem 9: 1636–1644. PubMed
Riley KE, Hobza P (2007) Assessment of the MP2 method, along with several basis sets, for the computation of interaction energies of biologically relevant hydrogen bonded and dispersion bound complexes. J Phys Chem A 111: 8257–8263. PubMed
Morales JC, Lucas R, Gomez-Pinto I, Avino A, Reina JJ, et al. (2011) Highly Polar Carbohydrates Stack onto DNA Duplexes via CH/pi Interactions. J Am Chem Soc 133: 1909–1916. PubMed
Asensio JL, Vacas T, Corzana F, Jimenez-Oses G, Gonzalez C, et al. (2010) Role of Aromatic Rings in the Molecular Recognition of Aminoglycoside Antibiotics: Implications for Drug Design. J Am Chem Soc 132: 12074–12090. PubMed
Klaholz BP, Moras D (2002) C-H ··· O hydrogen bonds in the nuclear receptor RAR gamma - a potential tool for drug selectivity. Structure 10: 1197–1204. PubMed
Kostlanova N, Mitchell EP, Lortat-Jacob H, Oscarson S, Lahmann M, et al. (2005) The fucose-binding lectin from Ralstonia solanacearum - A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J Biol Chem 280: 27839–27849. PubMed
Hayward AC (1991) Biology and Epidemiology of Bacterial Wilt Caused by Pseudomonas-Solanacearum. Annu Rev Phytopathol 29: 65–87. PubMed
Schell MA (2000) Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu Rev Phytopathol 38: 263–292. PubMed
Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, et al. (2002) Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Biol 9: 918–921. PubMed
Hosono M, Sugawara S, Ogawa Y, Kohno T, Takayanagi M, et al. (2005) Purification, characterization, cDNA cloning, and expression of asialofetuin-binding C-type lectin from eggs of shishamo smelt (Osmerus [Spirinchus] lanceolatus). Bba-Gen Subjects 1725: 160–173. PubMed
Watanabe Y, Abolhassani M, Tojo Y, Suda Y, Miyazawa K, et al. (2009) Evaluation of silica gel-immobilized phosphorylcholine columns for size exclusion chromatography and their application in the analysis of the subunit structures of fish-egg lectins. J Chromatogr A 1216: 8563–8566. PubMed
Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, et al... (2010) AMBER 11. University of California, San Francisco.
DeMarco ML, Woods RJ (2008) Structural glycobiology: A game of snakes and ladders. Glycobiology 18: 426–440. PubMed PMC
Woods RJ, Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, et al. (2008) GLYCAM06: A generalizable Biomolecular force field. Carbohydrates. J Comput Chem 29: 622–655. PubMed PMC
Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25: 1463–1473. PubMed
Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27: 1787–1799. PubMed
Becke AD (1988) Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Phys Rev A 38: 3098–3100. PubMed
Perdew JP (1986) Density-Functional Approximation for the Correlation-Energy of the Inhomogeneous Electron-Gas. Phys Rev B 33: 8822–8824. PubMed
Perdew JP, Yue W (1986) Accurate and Simple Density Functional for the Electronic Exchange Energy - Generalized Gradient Approximation. Phys Rev B 33: 8800–8802. PubMed
Ahlrichs R, Bär M, Baron H, Bauernschmitt R, Böcker S, et al... (2009) TURBOMOLE V6.0. University of Karlsruhe and Forschungszentrum Karlsruhe GmbH (1989–2007),TURBOMOLE GmbH (since 2007).
Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Electronic-Structure Calculations on Workstation Computers - the Program System Turbomole. Chem Phys Lett 162: 165–169.
Hattig C, Weigend F (2000) CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J Chem Phys 113: 5154–5161.
Weigend F, Haser M (1997) RI-MP2: first derivatives and global consistency. Theor Chem Acc 97: 331–340.
Weigend F, Haser M, Patzelt H, Ahlrichs R (1998) RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem Phys Lett 294: 143–152.
Boys SF, Bernardi F (1970) Calculation of Small Molecular Interactions by Differences of Separate Total Energies - Some Procedures with Reduced Errors. Mol Phys 19: 553–&.
Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (Reprinted from Molecular Physics, vol 19, pg 553–566, 1970). Mol Phys 100: 65–73.
Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78: 1606–1619. PubMed PMC