PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26013810
PubMed Central
PMC4489247
DOI
10.1093/nar/gkv561
PII: gkv561
Knihovny.cz E-zdroje
- MeSH
- databáze proteinů * MeSH
- internet MeSH
- konformace proteinů MeSH
- lektiny chemie MeSH
- makromolekulární látky chemie MeSH
- molekulární konformace * MeSH
- molekulární modely MeSH
- software * MeSH
- vazebná místa MeSH
- zinkové prsty MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- LecB protein, Pseudomonas aeruginosa MeSH Prohlížeč
- lektiny MeSH
- makromolekulární látky MeSH
Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery.
Zobrazit více v PubMed
Gutmanas A., Alhroub Y., Battle G.M., Berrisford J.M., Bochet E., Conroy M.J., Dana J.M., Fernandez Montecelo M.A., van Ginkel G., Gore S.P., et al. PDBe: Protein Data Bank in Europe. Nucleic Acids Res. 2014;42:D285–D291. PubMed PMC
Smith K.P., Gifford K.M., Waitzman J.S., Rice S.E. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects. Proteins Struct. Funct. Bioinforma. 2014;83:25–36. PubMed PMC
Gavenonis J., Sheneman B.A., Siegert T.R., Eshelman M.R., Kritzer J.A. Comprehensive analysis of loops at protein-protein interfaces for macrocycle design. Nat. Chem. Biol. 2014;10:1–8. PubMed PMC
Steinkellner G., Gruber C.C., Pavkov-Keller T., Binter A., Steiner K., Winkler C., Lyskowski A., Schwamberger O., Oberer M., Schwab H., et al. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations. Nat. Commun. 2014;5:4150. PubMed PMC
Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988;28:31–36.
Proschak E., Wegner J.K., Schüller A., Schneider G., Fechner U. Molecular query language (MQL)–a context-free grammar for substructure matching. J. Chem. Inf. Model. 2007;47:295–301. PubMed
Homer R.W., Swanson J., Jilek R.J., Hurst T., Clark R.D. SYBYL line notation (SLN): A single notation to represent chemical structures, queries, reactions, and virtual libraries. J. Chem. Inf. Model. 2008;48:2294–2307. PubMed
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. PubMed
Biasini M., Schmidt T., Bienert S., Mariani V., Studer G., Haas J., Johner N., Schenk A.D., Philippsen A., Schwede T. OpenStructure: an integrated software framework for computational structural biology. Acta Crystallogr. D. Biol. Crystallogr. 2013;69:701–709. PubMed PMC
Kalev I., Mechelke M., Kopec K.O., Holder T., Carstens S., Habeck M. CSB: a Python framework for structural bioinformatics. Bioinformatics. 2012;28:2996–2997. PubMed
The PyMOL Molecular Graphics System. Schrödinger, LLC; Version 1.7.4.
Täubig H., Buchner A., Griebsch J. PAST: fast structure-based searching in the PDB. Nucleic Acids Res. 2006;34:W20–W23. PubMed PMC
Nadzirin N., Willett P., Artymiuk P.J., Firdaus-Raih M. IMAAAGINE: a webserver for searching hypothetical 3D amino acid side chain arrangements in the Protein Data Bank. Nucleic Acids Res. 2013;41:W432–W440. PubMed PMC
Samson A.O., Levitt M. Protein segment finder: an online search engine for segment motifs in the PDB. Nucleic Acids Res. 2009;37:D224–D228. PubMed PMC
Andreeva A., Howorth D., Chothia C., Kulesha E., Murzin A.G. SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res. 2014;42:D310–D314. PubMed PMC
Sillitoe I., Lewis T.E., Cuff A., Das S., Ashford P., Dawson N.L., Furnham N., Laskowski R.A., Lee D., Lees J.G., et al. CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 2014;43:D376–D381. PubMed PMC
Furnham N., Holliday G.L., De Beer T.A.P., Jacobsen J.O.B., Pearson W.R., Thornton J.M. The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res. 2014;42:1–5. PubMed PMC
Higurashi M., Ishida T., Kinoshita K. PiSite: a database of protein interaction sites using multiple binding states in the PDB. Nucleic Acids Res. 2009;37:D360–D364. PubMed PMC
Sehnal D., Svobodová Vařeková R., Pravda L., Ionescu C.-M., Geidl S., Horský V., Jaiswal D., Wimmerová M., Koča J. ValidatorDB: database of up-to-date validation results for ligands and non-standard residues from the Protein Data Bank. Nucleic Acids Res. 2015;43:D369–D375. PubMed PMC
Hauck D., Joachim I., Frommeyer B., Varrot A., Philipp B., Möller H.M., Imberty A., Exner T.E., Titz A. Discovery of two classes of potent glycomimetic inhibitors of Pseudomonas aeruginosa LecB with distinct binding modes. ACS Chem. Biol. 2013;8:1775–1784. PubMed
Ernst B., Magnani J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov. 2009;8:661–677. PubMed PMC
Winzer K., Falconer C., Garber N.C., Diggle S.P., Camara M., Williams P. The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J. Bacteriol. 2000;182:6401–6411. PubMed PMC
Sabin C., Mitchell E.P., Pokorná M., Gautier C., Utille J.-P., Wimmerová M., Imberty A. Binding of different monosaccharides by lectin PA-IIL from Pseudomonas aeruginosa: thermodynamics data correlated with X-ray structures. FEBS Lett. 2006;580:982–987. PubMed
Mitchell E., Houles C., Sudakevitz D., Wimmerova M., Gautier C., Pérez S., Wu A.M., Gilboa-Garber N., Imberty A. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat. Struct. Biol. 2002;9:918–921. PubMed
Laity J.H., Lee B.M., Wright P.E. Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 2001;11:39–46. PubMed
Gersbach C.A., Gaj T., Barbas C.F. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 2014;47:2309–2318. PubMed PMC
Wang Z., Feng L.S., Matskevich V., Venkataraman K., Parasuram P., Laity J.H. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae. J. Mol. Biol. 2006;357:1167–1183. PubMed
Activities at the Universal Protein Resource (UniProt) Nucleic Acids Res. 2014;42:D191–D198. PubMed PMC
Pabo C.O., Peisach E., Grant R.A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 2001;70:313–340. PubMed
Hartwig A. Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid. Redox Signal. 2001;3:625–634. PubMed
Pavletich N.P., Pabo C.O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science. 1993;261:1701–1707. PubMed
Malgieri G., Zaccaro L., Leone M., Bucci E., Esposito S., Baglivo I., Del Gatto A., Russo L., Scandurra R., Pedone P.V., et al. Zinc to cadmium replacement in the A. thaliana SUPERMAN Cys 2His 2 zinc finger induces structural rearrangements of typical DNA base determinant positions. Biopolymers. 2011;95:801–810. PubMed
Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures
High-performance macromolecular data delivery and visualization for the web
MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update)
LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data
The Eighth Central European Conference "Chemistry towards Biology": Snapshot