PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank

. 2015 Jul 01 ; 43 (W1) : W383-8. [epub] 20150526

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26013810

Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery.

Zobrazit více v PubMed

Gutmanas A., Alhroub Y., Battle G.M., Berrisford J.M., Bochet E., Conroy M.J., Dana J.M., Fernandez Montecelo M.A., van Ginkel G., Gore S.P., et al. PDBe: Protein Data Bank in Europe. Nucleic Acids Res. 2014;42:D285–D291. PubMed PMC

Smith K.P., Gifford K.M., Waitzman J.S., Rice S.E. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects. Proteins Struct. Funct. Bioinforma. 2014;83:25–36. PubMed PMC

Gavenonis J., Sheneman B.A., Siegert T.R., Eshelman M.R., Kritzer J.A. Comprehensive analysis of loops at protein-protein interfaces for macrocycle design. Nat. Chem. Biol. 2014;10:1–8. PubMed PMC

Steinkellner G., Gruber C.C., Pavkov-Keller T., Binter A., Steiner K., Winkler C., Lyskowski A., Schwamberger O., Oberer M., Schwab H., et al. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations. Nat. Commun. 2014;5:4150. PubMed PMC

Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988;28:31–36.

Proschak E., Wegner J.K., Schüller A., Schneider G., Fechner U. Molecular query language (MQL)–a context-free grammar for substructure matching. J. Chem. Inf. Model. 2007;47:295–301. PubMed

Homer R.W., Swanson J., Jilek R.J., Hurst T., Clark R.D. SYBYL line notation (SLN): A single notation to represent chemical structures, queries, reactions, and virtual libraries. J. Chem. Inf. Model. 2008;48:2294–2307. PubMed

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. PubMed

Biasini M., Schmidt T., Bienert S., Mariani V., Studer G., Haas J., Johner N., Schenk A.D., Philippsen A., Schwede T. OpenStructure: an integrated software framework for computational structural biology. Acta Crystallogr. D. Biol. Crystallogr. 2013;69:701–709. PubMed PMC

Kalev I., Mechelke M., Kopec K.O., Holder T., Carstens S., Habeck M. CSB: a Python framework for structural bioinformatics. Bioinformatics. 2012;28:2996–2997. PubMed

The PyMOL Molecular Graphics System. Schrödinger, LLC; Version 1.7.4.

Täubig H., Buchner A., Griebsch J. PAST: fast structure-based searching in the PDB. Nucleic Acids Res. 2006;34:W20–W23. PubMed PMC

Nadzirin N., Willett P., Artymiuk P.J., Firdaus-Raih M. IMAAAGINE: a webserver for searching hypothetical 3D amino acid side chain arrangements in the Protein Data Bank. Nucleic Acids Res. 2013;41:W432–W440. PubMed PMC

Samson A.O., Levitt M. Protein segment finder: an online search engine for segment motifs in the PDB. Nucleic Acids Res. 2009;37:D224–D228. PubMed PMC

Andreeva A., Howorth D., Chothia C., Kulesha E., Murzin A.G. SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res. 2014;42:D310–D314. PubMed PMC

Sillitoe I., Lewis T.E., Cuff A., Das S., Ashford P., Dawson N.L., Furnham N., Laskowski R.A., Lee D., Lees J.G., et al. CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 2014;43:D376–D381. PubMed PMC

Furnham N., Holliday G.L., De Beer T.A.P., Jacobsen J.O.B., Pearson W.R., Thornton J.M. The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res. 2014;42:1–5. PubMed PMC

Higurashi M., Ishida T., Kinoshita K. PiSite: a database of protein interaction sites using multiple binding states in the PDB. Nucleic Acids Res. 2009;37:D360–D364. PubMed PMC

Sehnal D., Svobodová Vařeková R., Pravda L., Ionescu C.-M., Geidl S., Horský V., Jaiswal D., Wimmerová M., Koča J. ValidatorDB: database of up-to-date validation results for ligands and non-standard residues from the Protein Data Bank. Nucleic Acids Res. 2015;43:D369–D375. PubMed PMC

Hauck D., Joachim I., Frommeyer B., Varrot A., Philipp B., Möller H.M., Imberty A., Exner T.E., Titz A. Discovery of two classes of potent glycomimetic inhibitors of Pseudomonas aeruginosa LecB with distinct binding modes. ACS Chem. Biol. 2013;8:1775–1784. PubMed

Ernst B., Magnani J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov. 2009;8:661–677. PubMed PMC

Winzer K., Falconer C., Garber N.C., Diggle S.P., Camara M., Williams P. The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J. Bacteriol. 2000;182:6401–6411. PubMed PMC

Sabin C., Mitchell E.P., Pokorná M., Gautier C., Utille J.-P., Wimmerová M., Imberty A. Binding of different monosaccharides by lectin PA-IIL from Pseudomonas aeruginosa: thermodynamics data correlated with X-ray structures. FEBS Lett. 2006;580:982–987. PubMed

Mitchell E., Houles C., Sudakevitz D., Wimmerova M., Gautier C., Pérez S., Wu A.M., Gilboa-Garber N., Imberty A. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat. Struct. Biol. 2002;9:918–921. PubMed

Laity J.H., Lee B.M., Wright P.E. Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 2001;11:39–46. PubMed

Gersbach C.A., Gaj T., Barbas C.F. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 2014;47:2309–2318. PubMed PMC

Wang Z., Feng L.S., Matskevich V., Venkataraman K., Parasuram P., Laity J.H. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae. J. Mol. Biol. 2006;357:1167–1183. PubMed

Activities at the Universal Protein Resource (UniProt) Nucleic Acids Res. 2014;42:D191–D198. PubMed PMC

Pabo C.O., Peisach E., Grant R.A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 2001;70:313–340. PubMed

Hartwig A. Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid. Redox Signal. 2001;3:625–634. PubMed

Pavletich N.P., Pabo C.O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science. 1993;261:1701–1707. PubMed

Malgieri G., Zaccaro L., Leone M., Bucci E., Esposito S., Baglivo I., Del Gatto A., Russo L., Scandurra R., Pedone P.V., et al. Zinc to cadmium replacement in the A. thaliana SUPERMAN Cys 2His 2 zinc finger induces structural rearrangements of typical DNA base determinant positions. Biopolymers. 2011;95:801–810. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...