Development and application of a novel recombinant Aleuria aurantia lectin with enhanced core fucose binding for identification of glycoprotein biomarkers of hepatocellular carcinoma
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R01 CA120206
NCI NIH HHS - United States
U01 CA168856
NCI NIH HHS - United States
PubMed
27650323
PubMed Central
PMC5869706
DOI
10.1002/pmic.201600064
Knihovny.cz E-zdroje
- Klíčová slova
- Aleuria aurantia lectin, Biomarker, Glycoproteomics, Glycosylation, Hepatocellular carcinoma, Liver cancer,
- MeSH
- Ascomycota chemie MeSH
- buněčné linie MeSH
- fukosa analýza metabolismus MeSH
- glykoproteiny analýza metabolismus MeSH
- hepatocelulární karcinom diagnóza metabolismus MeSH
- hepatocyty metabolismus patologie MeSH
- játra metabolismus patologie MeSH
- kultivované buňky MeSH
- lektiny chemie metabolismus MeSH
- lidé MeSH
- nádorové biomarkery analýza metabolismus MeSH
- nádory jater diagnóza metabolismus MeSH
- polysacharidy chemie metabolismus MeSH
- proteomika MeSH
- rekombinantní proteiny chemie metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- fukosa MeSH
- glykoproteiny MeSH
- lectin, Aleuria aurantia MeSH Prohlížeč
- lektiny MeSH
- nádorové biomarkery MeSH
- polysacharidy MeSH
- rekombinantní proteiny MeSH
The Aleuria aurantia lectin (AAL) derived from orange peel fungus contains five fucose-binding sites that recognizes fucose bound in α-1,2, α-1,3, α-1,4, and α-1,6 linkages to N-acetylglucosamine and galactose. Recently, we have created several recombinant AAL (rAAL) proteins that had altered binding affinity to fucose linkages. In this report, we further characterize the binding specificity of one of the mutated lectins, N224Q lectin. This lectin was characterized by lectin Western blotting, surface plasmon resonance, and glycan microarray and shown to have increased binding to fucosylated glycan. Subsequently, we used this lectin to identify secreted fucosylated glycoproteins from a fetal hepatic cell line. Proteomic analysis revealed several glycoproteins secreted by the fetal cell line that were bound by N224Q lectin. These findings were confirmed by subsequent proteomic analysis of human serum from control patients or patients with hepatocellular carcinoma. These represent candidate oncofetal markers for liver cancer.
Baruch S Blumberg Institute Doylestown PA USA
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Microbiology and Immunology Drexel University College of Medicine Philadelphia PA USA
Zobrazit více v PubMed
Taniguchi N, Kizuka Y. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res. 2015;126:11–51. PubMed
Miyoshi E, Noda K, Yamaguchi Y, Inoue S, et al. The alpha1–6-fucosyltransferase gene and its biological significance. Biochimica et biophysica acta. 1999;1473:9–20. PubMed
Mehta A, Herrera H, Block T. Glycosylation and liver cancer. Adv Cancer Res. 2015;126:257–279. PubMed PMC
Naitoh A, Aoyagi Y, Asakura H. Highly enhanced fucosylation of serum glycoproteins in patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 1999;14:436–445. PubMed
Lamontagne A, Long RE, Comunale MA, Hafner J, et al. Altered functionality of anti-bacterial antibodies in patients with chronic hepatitis C virus infection. PloS one. 2013;8:e64992. PubMed PMC
Comunale M, Wang M, Anbarasan N, Betesh L, et al. Total serum glycan analysis is superior to Lectin-FLISA for the early detection of hepatocellular carcinoma. Proteomics. Clinical applications. 2013 PubMed PMC
Mehta A, Norton P, Liang H, Comunale MA, et al. Increased Levels of Tetra-antennary N-Linked Glycan but Not Core Fucosylation Are Associated with Hepatocellular Carcinoma Tissue. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2012;21:925–933. PubMed PMC
Comunale MA, Wang M, Rodemich-Betesh L, Hafner J, et al. Novel changes in glycosylation of serum Apo-J in patients with hepatocellular carcinoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2011;20:1222–1229. PubMed PMC
Wang M, Long RE, Comunale MA, Junaidi O, et al. Novel fucosylated biomarkers for the early detection of hepatocellular carcinoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2009;18:1914–1921. PubMed PMC
Comunale MA, Wang M, Hafner J, Krakover J, et al. Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. Journal of proteome research. 2009;8:595–602. PubMed PMC
Norton PA, Comunale MA, Krakover J, Rodemich L, et al. N-linked glycosylation of the liver cancer biomarker GP73. Journal of cellular biochemistry. 2008;104:136–149. PubMed PMC
Mehta A, Block TM. Fucosylated glycoproteins as markers of liver disease. Dis Markers. 2008;25:259–265. PubMed PMC
Drake RR, Schwegler EE, Malik G, Diaz J, et al. Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol Cell Proteomics. 2006;5:1957–1967. PubMed
Comunale MA, Lowman M, Long RE, Krakover J, et al. Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. Journal of proteome research. 2006;5:308–315. PubMed
Block TM, Comunale MA, Lowman M, Steel LF, et al. Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:779–784. PubMed PMC
Comunale MA, Lowman M, Long RE, Krakover J, et al. Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. Journal of Proteome Research. 2006;5:308–315. PubMed
Olausson J, Tibell L, Jonsson BH, Pahlsson P. Detection of a high affinity binding site in recombinant Aleuria aurantia lectin. Glycoconj J. 2008;25:753–762. PubMed
Wimmerova M, Mitchell E, Sanchez JF, Gautier C, et al. Crystal structure of fungal lectin: six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. The Journal of biological chemistry. 2003;278:27059–27067. PubMed
Fujihashi M, Peapus DH, Kamiya N, Nagata Y, et al. Crystal structure of fucose-specific lectin from Aleuria aurantia binding ligands at three of its five sugar recognition sites. Biochemistry. 2003;42:11093–11099. PubMed
Fujihashi M, Peapus DH, Nakajima E, Yamada T, et al. X-ray crystallographic characterization and phasing of a fucose-specific lectin from Aleuria aurantia. Acta Crystallogr D Biol Crystallogr. 2003;59:378–380. PubMed
Romano PR, Mackay A, Vong M, DeSa J, et al. Development of recombinant Aleuria aurantia lectins with altered binding specificities to fucosylated glycans. Biochemical and biophysical research communications. 2011;414:84–89. PubMed PMC
Kobayashi Y, Tateno H, Dohra H, Moriwaki K, et al. A novel core fucose-specific lectin from the mushroom Pholiota squarrosa. J Biol Chem. 2012;287:33973–33982. PubMed PMC
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. PubMed
Song X, Lasanajak Y, Xia B, Heimburg-Molinaro J, et al. Shotgun glycomics: a microarray strategy for functional glycomics. Nat Meth. 2011;8:85–90. PubMed PMC
Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:14440–14445. PubMed PMC
Comunale MA, Mattu TS, Lowman MA, Evans AA, et al. Comparative proteomic analysis of de-N-glycosylated serum from hepatitis B carriers reveals polypeptides that correlate with disease status. Proteomics. 2004;4:826–838. PubMed
Romano PR, Mackay A, Vong M, deSa J, et al. Development of recombinant Aleuria aurantia lectins with altered binding specificities to fucosylated glycans. Biochemical and Biophysical Research Communications. 2011;414:84–89. PubMed PMC
Matsumura K, Higashida K, Ishida H, Hata Y, et al. Carbohydrate binding specificity of a fucose-specific lectin from Aspergillus oryzae: a novel probe for core fucose. The Journal of biological chemistry. 2007;282:15700–15708. PubMed
Deurholt T, van Til NP, Chhatta AA, ten Bloemendaal L, et al. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol. 2009;9:89. PubMed PMC
Comunale MA, Wang M, Hafner J, Krakover J, et al. Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. J Proteome Res. 2009;8:595–602. PubMed PMC
Yin H, Tan Z, Wu J, Zhu J, et al. Mass-Selected Site-Specific Core-Fucosylation of Serum Proteins in Hepatocellular Carcinoma. Journal of proteome research. 2015;14:4876–4884. PubMed PMC
Block TM, Comunale MA, Lowman M, Steel LF, et al. Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:779–784. PubMed PMC
Tajiri M, Yoshida S, Wada Y. Differential analysis of site-specific glycans on plasma and cellular fibronectins: application of a hydrophilic affinity method for glycopeptide enrichment. Glycobiology. 2005;15:1332–1340. PubMed
Schor SL, Ellis IR, Jones SJ, Baillie R, et al. Migration-stimulating factor: a genetically truncated onco-fetal fibronectin isoform expressed by carcinoma and tumor-associated stromal cells. Cancer research. 2003;63:8827–8836. PubMed
Sekiguchi K, Klos AM, Kurachi K, Yoshitake S, et al. Human liver fibronectin complementary DNAs: identification of two different messenger RNAs possibly encoding the alpha and beta subunits of plasma fibronectin. Biochemistry. 1986;25:4936–4941. PubMed
Jia W, Lu Z, Fu Y, Wang HP, et al. A strategy for precise and large scale identification of core fucosylated glycoproteins. Mol Cell Proteomics. 2009;8:913–923. PubMed PMC
Leonhard-Melief C, Haltiwanger RS. O-fucosylation of thrombospondin type 1 repeats. Methods in enzymology. 2010;480:401–416. PubMed
Lietard J, Loreal O, Theret N, Campion JP, et al. Laminin isoforms in non-tumoral and tumoral human livers. Expression of alpha1, alpha2, beta1, beta2 and gamma1 chain mRNA and an alpha chain homologous to the alpha2 chain. Journal of hepatology. 1998;28:691–699. PubMed
Lietard J, Musso O, Theret N, L'Helgoualc'h A, et al. Sp1-mediated transactivation of LamC1 promoter and coordinated expression of laminin-gamma1 and Sp1 in human hepatocellular carcinomas. Am J Pathol. 1997;151:1663–1672. PubMed PMC
Kanda M, Nomoto S, Okamura Y, Hayashi M, et al. Promoter hypermethylation of fibulin 1 gene is associated with tumor progression in hepatocellular carcinoma. Mol Carcinog. 2011;50:571–579. PubMed
Poon RT, Chung KK, Cheung ST, Lau CP, et al. Clinical significance of thrombospondin 1 expression in hepatocellular carcinoma. Clin Cancer Res. 2004;10:4150–4157. PubMed
Chen Y, Leask A, Abraham DJ, Kennedy L, et al. Thrombospondin 1 is a key mediator of transforming growth factor beta-mediated cell contractility in systemic sclerosis via a mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)-dependent mechanism. Fibrogenesis Tissue Repair. 2011;4:9. PubMed PMC
Jiang SS, Weng DS, Wang QJ, Pan K, et al. Galectin-3 is associated with a poor prognosis in primary hepatocellular carcinoma. J Transl Med. 2014;12:273. PubMed PMC
Yu LG, Andrews N, Zhao Q, McKean D, et al. Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. The Journal of biological chemistry. 2007;282:773–781. PubMed
Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. Journal of internal medicine. 2008;264:224–236. PubMed PMC
Vincent F, Bonnin P, Clemessy M, Contreres JO, et al. Angiotensinogen delays angiogenesis and tumor growth of hepatocarcinoma in transgenic mice. Cancer research. 2009;69:2853–2860. PubMed