Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H2O2 Electrosynthesis

. 2023 Aug 04 ; 13 (15) : 10205-10216. [epub] 20230720

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37560189

Large-scale development of electrochemical cells is currently hindered by the lack of Earth-abundant electrocatalysts with high catalytic activity, product selectivity, and interfacial mass transfer. Herein, we developed an electrocatalyst fabrication approach which responds to these requirements by irradiating plasmonic titanium nitride (TiN) nanocubes self-assembled on a carbon gas diffusion layer in the presence of polymeric binders. The localized heating produced upon illumination creates unique conditions for the formation of TiN/F-doped carbon hybrids that show up to nearly 20 times the activity of the pristine electrodes. In alkaline conditions, they exhibit enhanced stability, a maximum H2O2 selectivity of 90%, and achieve a H2O2 productivity of 207 mmol gTiN-1 h-1 at 0.2 V vs RHE. A detailed electrochemical investigation with different electrode arrangements demonstrated the key role of nanocomposite formation to achieve high currents. In particular, an increased TiOxNy surface content promoted a higher H2O2 selectivity, and fluorinated nanocarbons imparted good stability to the electrodes due to their superhydrophobic properties.

Zobrazit více v PubMed

Govind Rajan A.; Martirez J. M. P.; Carter E. A. Why Do We Use the Materials and Operating Conditions We Use for Heterogeneous (Photo)Electrochemical Water Splitting?. ACS Catal. 2020, 10, 11177–11234. 10.1021/acscatal.0c01862. DOI

Yu Z.-Y.; Duan Y.; Feng X.-Y.; Yu X.; Gao M.-R.; Yu S.-H. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv. Mater. 2021, 33, 2007100.10.1002/adma.202007100. PubMed DOI

Seh Z. W.; Kibsgaard J.; Dickens C. F.; Chorkendorff I.; Nørskov J. K.; Jaramillo T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad499810.1126/science.aad4998. PubMed DOI

Stephens I. E. L.; Chan K.; Bagger A.; Boettcher S. W.; Bonin J.; Boutin E.; Buckley A. K.; Buonsanti R.; Cave E. R.; Chang X.; et al. 2022 roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 2022, 4, 042003.10.1088/2515-7655/ac7823. DOI

Sun Y.; Han L.; Strasser P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605–6631. 10.1039/D0CS00458H. PubMed DOI

Shi X.; Back S.; Gill T. M.; Siahrostami S.; Zheng X. Electrochemical Synthesis of H2O2 by Two-Electron Water Oxidation Reaction. Chem 2021, 7, 38–63. 10.1016/j.chempr.2020.09.013. DOI

Kirubakaran A.; Jain S.; Nema R. K. A review on fuel cell technologies and power electronic interface. Renewable Sustainable Energy Rev. 2009, 13, 2430–2440. 10.1016/j.rser.2009.04.004. DOI

Fan L.; Tu Z.; Chan S. H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. 10.1016/j.egyr.2021.08.003. DOI

Liu Q.; Pan Z.; Wang E.; An L.; Sun G. Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Mater. 2020, 27, 478–505. 10.1016/j.ensm.2019.12.011. DOI

Li M.; Bi X.; Wang R.; Li Y.; Jiang G.; Li L.; Zhong C.; Chen Z.; Lu J. Relating Catalysis between Fuel Cell and Metal-Air Batteries. Matter 2020, 2, 32–49. 10.1016/j.matt.2019.10.007. DOI

Jiang Y.; Ni P.; Chen C.; Lu Y.; Yang P.; Kong B.; Fisher A.; Wang X. Selective Electrochemical H2O2 Production through Two-Electron Oxygen Electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.10.1002/aenm.201801909. DOI

Hommura S.; Kawahara K.; Shimohira T.; Teraoka Y. Development of a Method for Clarifying the Perfluorosulfonated Membrane Degradation Mechanism in a Fuel Cell Environment. J. Electrochem. Soc. 2008, 155, A29.10.1149/1.2800171. DOI

Brillas E.; Alcaide F.; Cabot P.-L. s. A small-scale flow alkaline fuel cell for on-site production of hydrogen peroxide. Electrochim. Acta 2002, 48, 331–340. 10.1016/S0013-4686(02)00665-5. DOI

Yamanaka I.; Onizawa T.; Takenaka S.; Otsuka K. Direct and Continuous Production of Hydrogen Peroxide with 93 % Selectivity Using a Fuel-Cell System. Angew. Chem., Int. Ed. 2003, 42, 3653–3655. 10.1002/anie.200351343. PubMed DOI

Yamanaka I.; Hashimoto T.; Ichihashi R.; Otsuka K. Direct synthesis of H2O2 acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H2/O2 fuel cell. Electrochim. Acta 2008, 53, 4824–4832. 10.1016/j.electacta.2008.02.009. DOI

Yang S.; Verdaguer-Casadevall A.; Arnarson L.; Silvioli L.; Čolić V.; Frydendal R.; Rossmeisl J.; Chorkendorff I.; Stephens I. E. L. Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. ACS Catal. 2018, 8, 4064–4081. 10.1021/acscatal.8b00217. DOI

Dong K.; Liang J.; Wang Y.; Zhang L.; Xu Z.; Sun S.; Luo Y.; Li T.; Liu Q.; Li N.; et al. Conductive Two-Dimensional Magnesium Metal–Organic Frameworks for High-Efficiency O2 Electroreduction to H2O2. ACS Catal. 2022, 12, 6092–6099. 10.1021/acscatal.2c00819. DOI

Du J.; Jiang S.; Zhang R.; Wang P.; Ma C.; Zhao R.; Cui C.; Zhang Y.; Kang Y. Generation of Pd–O for Promoting Electrochemical H2O2 Production. ACS Catal. 2023, 13, 6887–6892. 10.1021/acscatal.3c00449. DOI

Kodama K.; Nagai T.; Kuwaki A.; Jinnouchi R.; Morimoto Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 2021, 16, 140–147. 10.1038/s41565-020-00824-w. PubMed DOI

Perazzolo V.; Durante C.; Pilot R.; Paduano A.; Zheng J.; Rizzi G. A.; Martucci A.; Granozzi G.; Gennaro A. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 2015, 95, 949–963. 10.1016/j.carbon.2015.09.002. DOI

Lu Z.; Chen G.; Siahrostami S.; Chen Z.; Liu K.; Xie J.; Liao L.; Wu T.; Lin D.; Liu Y.; et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162. 10.1038/s41929-017-0017-x. DOI

Iglesias D.; Giuliani A.; Melchionna M.; Marchesan S.; Criado A.; Nasi L.; Bevilacqua M.; Tavagnacco C.; Vizza F.; Prato M.; et al. N-Doped Graphitized Carbon Nanohorns as a Forefront Electrocatalyst in Highly Selective O2 Reduction to H2O2. Chem 2018, 4, 106–123. 10.1016/j.chempr.2017.10.013. DOI

Zhang Y.; Melchionna M.; Medved M.; Błoński P.; Steklý T.; Bakandritsos A.; Kment Š.; Zbořil R.; Otyepka M.; Fornaserio P.; et al. Enhanced On-Site Hydrogen Peroxide Electrosynthesis by a Selectively Carboxylated N-Doped Graphene Catalyst. ChemCatChem 2021, 13, 4372–4383. 10.1002/cctc.202100805. DOI

Dong S.; Chen X.; Zhang X.; Cui G. Nanostructured transition metal nitrides for energy storage and fuel cells. Coord. Chem. Rev. 2013, 257, 1946–1956. 10.1016/j.ccr.2012.12.012. DOI

Cao B.; Veith G. M.; Diaz R. E.; Liu J.; Stach E. A.; Adzic R. R.; Khalifah P. G. Cobalt Molybdenum Oxynitrides: Synthesis, Structural Characterization, and Catalytic Activity for the Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2013, 52, 10753–10757. 10.1002/anie.201303197. PubMed DOI

Zhang J.; Hu H.; Liu X.; Li D. S. Development of the applications of titanium nitride in fuel cells. Mater. Today Chem. 2019, 11, 42–59. 10.1016/j.mtchem.2018.10.005. DOI

Zeng R.; Yang Y.; Feng X.; Li H.; Gibbs L. M.; DiSalvo F. J.; Abruña H. D. Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Sci. Adv. 2022, 8, eabj158410.1126/sciadv.abj1584. PubMed DOI PMC

Yang N.; Zhu X.; Wang G.; Zhou L.; Zhu X.; Pan J.; Yu W.; Xia C.; Tian C. Pyrolysis-Free Mechanochemical Conversion of Small Organic Molecules into Metal-Free Heteroatom-Doped Mesoporous Carbons for Efficient Electrosynthesis of Hydrogen Peroxide. ACS Mater. Lett. 2023, 5, 379–387. 10.1021/acsmaterialslett.2c01005. DOI

Zeng S.; Wang S.; Zhuang H.; Lu B.; Li C.; Wang Y.; Wang G. Fluorine-doped carbon: A metal-free electrocatalyst for oxygen reduction to peroxide. Electrochim. Acta 2022, 420, 140460.10.1016/j.electacta.2022.140460. DOI

Chang Y.; Chen J.; Jia J.; Hu X.; Yang H.; Jia M.; Wen Z. The fluorine-doped and defects engineered carbon nanosheets as advanced electrocatalysts for oxygen electroreduction. Appl. Catal., B 2021, 284, 119721.10.1016/j.apcatb.2020.119721. DOI

Jia N.; Yang T.; Shi S.; Chen X.; An Z.; Chen Y.; Yin S.; Chen P. N,F-Codoped Carbon Nanocages: An Efficient Electrocatalyst for Hydrogen Peroxide Electroproduction in Alkaline and Acidic Solutions. ACS Sustainable Chem. Eng. 2020, 8, 2883–2891. 10.1021/acssuschemeng.9b07047. DOI

Patsalas P.; Kalfagiannis N.; Kassavetis S.; Abadias G.; Bellas D. V.; Lekka C.; Lidorikis E. Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Mater. Sci. Eng., R 2018, 123, 1–55. 10.1016/j.mser.2017.11.001. DOI

Li W.; Guler U.; Kinsey N.; Naik G. V.; Boltasseva A.; Guan J.; Shalaev V. M.; Kildishev A. V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26, 7959–7965. 10.1002/adma.201401874. PubMed DOI

Krekeler T.; Rout S. S.; Krishnamurthy G. V.; Störmer M.; Arya M.; Ganguly A.; Sutherland D. S.; Bozhevolnyi S. I.; Ritter M.; Pedersen K.; et al. Unprecedented Thermal Stability of Plasmonic Titanium Nitride Films up to 1400 °C. Adv. Opt. Mater. 2021, 9, 2100323.10.1002/adom.202100323. DOI

Tian X.; Luo J.; Nan H.; Fu Z.; Zeng J.; Liao S. Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 16801–16809. 10.1039/C5TA04410C. DOI

Luo J.; Tian X.; Zeng J.; Li Y.; Song H.; Liao S. Limitations and Improvement Strategies for Early-Transition-Metal Nitrides as Competitive Catalysts toward the Oxygen Reduction Reaction. ACS Catal. 2016, 6, 6165–6174. 10.1021/acscatal.6b01618. DOI

Seifitokaldani A.; Savadogo O.; Perrier M. Stability and catalytic activity of titanium oxy-nitride catalyst prepared by in-situ urea-based sol–gel method for the oxygen reduction reaction (ORR) in acid medium. Int. J. Hydrogen Energy 2015, 40, 10427–10438. 10.1016/j.ijhydene.2015.06.002. DOI

Chisaka M.; Ando Y.; Itagaki N. Activity and durability of the oxygen reduction reaction in a nitrogen-doped rutile-shell on TiN-core nanocatalysts synthesised via solution-phase combustion. J. Mater. Chem. A 2016, 4, 2501–2508. 10.1039/C5TA08235H. DOI

Chisaka M.; Yamamoto Y.; Itagaki N.; Hattori Y. Active Site Formation for Oxygen Reduction Reaction on Carbon-Support-Free Titanium Oxynitride with Boosted Activity in Acidic Media. ACS Appl. Energy Mater. 2018, 1, 211–219. 10.1021/acsaem.7b00100. DOI

Chisaka M.; Xiang R.; Maruyama S.; Daiguji H. Efficient Phosphorus Doping into the Surface Oxide Layers on TiN to Enhance Oxygen Reduction Reaction Activity in Acidic Media. ACS Appl. Energy Mater. 2020, 3, 9866–9876. 10.1021/acsaem.0c01576. DOI

Chisaka M.; Ando Y.; Yamamoto Y.; Itagaki N. A Carbon-Support-Free Titanium Oxynitride Catalyst for Proton Exchange Membrane Fuel Cell Cathodes. Electrochim. Acta 2016, 214, 165–172. 10.1016/j.electacta.2016.08.032. DOI

Seifitokaldani A.; Oishi K.; Perrier M.; Savadogo O. Electrochemical and physicochemical properties of titanium Oxy-nitride electrocatalyst prepared by sol-gel methods for the oxygen reduction reaction purposes. J. Solid State Electrochem. 2015, 19, 3097–3109. 10.1007/s10008-015-2930-8. DOI

Kreider M. E.; Stevens M. B.; Liu Y.; Patel A. M.; Statt M. J.; Gibbons B. M.; Gallo A.; Ben-Naim M.; Mehta A.; Davis R. C.; et al. Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chem. Mater. 2020, 32, 2946–2960. 10.1021/acs.chemmater.9b05212. DOI

Dong K.; Liang J.; Wang Y.; Ren Y.; Xu Z.; Zhou H.; Li L.; Liu Q.; Luo Y.; Li T.; et al. Plasma-induced defective TiO2-x with oxygen vacancies: A high-active and robust bifunctional catalyst toward H2O2 electrosynthesis. Chem. Catal. 2021, 1, 1437–1448. 10.1016/j.checat.2021.10.011. DOI

Naldoni A.; Kudyshev Z. A.; Mascaretti L.; Sarmah S. P.; Rej S.; Froning J. P.; Tomanec O.; Yoo J. E.; Wang D.; Kment Š.; et al. Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. Nano Lett. 2020, 20, 3663–3672. 10.1021/acs.nanolett.0c00594. PubMed DOI

Guler U.; Shalaev V. M.; Boltasseva A. Nanoparticle plasmonics: going practical with transition metal nitrides. Mater. Today 2015, 18, 227–237. 10.1016/j.mattod.2014.10.039. DOI

Baffou G.; Cichos F.; Quidant R. Applications and challenges of thermoplasmonics. Nat. Mater. 2020, 19, 946–958. 10.1038/s41563-020-0740-6. PubMed DOI

Boyd D. A.; Greengard L.; Brongersma M.; El-Naggar M. Y.; Goodwin D. G. Plasmon-Assisted Chemical Vapor Deposition. Nano Lett. 2006, 6, 2592–2597. 10.1021/nl062061m. PubMed DOI

Martino G. D.; Michaelis F. B.; Salmon A. R.; Hofmann S.; Baumberg J. Controlling Nanowire Growth by Light. Nano Lett. 2015, 15, 7452–7457. 10.1021/acs.nanolett.5b02953. PubMed DOI

Violi I. L.; Gargiulo J.; von Bilderling C.; Cortés E.; Stefani F. D. Light-Induced Polarization-Directed Growth of Optically Printed Gold Nanoparticles. Nano Lett. 2016, 16, 6529–6533. 10.1021/acs.nanolett.6b03174. PubMed DOI

Kamarudheen R.; Kumari G.; Baldi A. Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles. Nat. Commun. 2020, 11, 3957.10.1038/s41467-020-17789-y. PubMed DOI PMC

Mascaretti L.; Schirato A.; Zbořil R.; Kment Š.; Schmuki P.; Alabastri A.; Naldoni A. Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. Nano Energy 2021, 83, 105828.10.1016/j.nanoen.2021.105828. DOI

Cortés E.; Xie W.; Cambiasso J.; Jermyn A. S.; Sundararaman R.; Narang P.; Schlücker S.; Maier S. A. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 2017, 8, 14880.10.1038/ncomms14880. PubMed DOI PMC

Zhan C.; Wang Q.-X.; Yi J.; Chen L.; Wu D.-Y.; Wang Y.; Xie Z.-X.; Moskovits M.; Tian Z.-Q. Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Sci. Adv. 2021, 7, eabf096210.1126/sciadv.abf0962. PubMed DOI PMC

Mascaretti L.; Schirato A.; Fornasiero P.; Boltasseva A.; Shalaev V. M.; Alabastri A.; Naldoni A. Challenges and prospects of plasmonic metasurfaces for photothermal catalysis. Nanophotonics 2022, 11, 3035–3056. 10.1515/nanoph-2022-0073. DOI

Burdyny T.; Smith W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 2019, 12, 1442–1453. 10.1039/C8EE03134G. DOI

Loukrakpam R.; Ferreira Gomes B.; Kottakkat T.; Roth C. A bird’s eye perspective of the measurement of oxygen reduction reaction in gas diffusion electrode half-cell set-ups for Pt electrocatalysts in acidic media. J. Phys. Mater. 2021, 4, 044004.10.1088/2515-7639/ac0319. DOI

Xing Z.; Shi K.; Parsons Z. S.; Feng X. Interplay of Active Sites and Microenvironment in High-Rate Electrosynthesis of H2O2 on Doped Carbon. ACS Catal. 2023, 13, 2780–2789. 10.1021/acscatal.2c05639. DOI

Cao P.; Quan X.; Zhao K.; Zhao X.; Chen S.; Yu H. Durable and Selective Electrochemical H2O2 Synthesis under a Large Current Enabled by the Cathode with Highly Hydrophobic Three-Phase Architecture. ACS Catal. 2021, 11, 13797–13808. 10.1021/acscatal.1c03236. DOI

Chen L.; Li S.; Yang Z.; Chen C.; Chu C.; Chen B. Enhanced photocatalytic hydrogen peroxide production at a solid-liquid-air interface via microenvironment engineering. Appl. Catal., B 2022, 305, 121066.10.1016/j.apcatb.2022.121066. DOI

Panizza M.; Cerisola G. Electrochemical generation of H2O2 in low ionic strength media on gas diffusion cathode fed with air. Electrochim. Acta 2008, 54, 876–878. 10.1016/j.electacta.2008.07.063. DOI

Van Nguyen T.; Ahosseini A.; Wang X.; Yarlagadda V.; Kwong A.; Weber A. Z.; Deevanhxay P.; Tsushima S.; Hirai S. Hydrophobic Gas-Diffusion Media for Polymer-Electrolyte Fuel Cells by Direct Fluorination. J. Electrochem. Soc. 2015, 162, F1451–F1460. 10.1149/2.0411514jes. DOI

Yu X.; Zhou M.; Ren G.; Ma L. A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chem. Eng. J. 2015, 263, 92–100. 10.1016/j.cej.2014.11.053. DOI

Zhang Q.; Zhou M.; Ren G.; Li Y.; Li Y.; Du X. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat. Commun. 2020, 11, 1731.10.1038/s41467-020-15597-y. PubMed DOI PMC

Zhang Y.; Daniel G.; Lanzalaco S.; Isse A. A.; Facchin A.; Wang A.; Brillas E.; Durante C.; Sirés I. H2O2 production at gas-diffusion cathodes made from agarose-derived carbons with different textural properties for acebutolol degradation in chloride media. J. Hazard. Mater. 2022, 423, 127005.10.1016/j.jhazmat.2021.127005. PubMed DOI

Kim J.; Zhou R.; Murakoshi K.; Yasuda S. Advantage of semi-ionic bonding in fluorine-doped carbon materials for the oxygen evolution reaction in alkaline media. RSC Adv. 2018, 8, 14152–14156. 10.1039/C8RA01636D. PubMed DOI PMC

Xing Z.; Hu L.; Ripatti D. S.; Hu X.; Feng X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 2021, 12, 136.10.1038/s41467-020-20397-5. PubMed DOI PMC

Gubbins K. E.; Walker R. D. The Solubility and Diffusivity of Oxygen in Electrolytic Solutions. J. Electrochem. Soc. 1965, 112, 469.10.1149/1.2423575. DOI

Itoe R. N.; Wesson G. D.; Kalu E. E. Evaluation of Oxygen Transport Parameters in H[sub 2]SO[sub 4]-CH[sub 3]OH Mixtures Using Electrochemical Methods. J. Electrochem. Soc. 2000, 147, 2445.10.1149/1.1393551. DOI

Wang X.; Zhou J.; Fu H.; Li W.; Fan X.; Xin G.; Zheng J.; Li X. MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2014, 2, 14064–14070. 10.1039/C4TA01506A. DOI

Wang Y. L.; Gurses S.; Felvey N.; Boubnov A.; Mao S. S.; Kronawitter C. X. In Situ Deposition of Pd during Oxygen Reduction Yields Highly Selective and Active Electrocatalysts for Direct H2O2 Production. ACS Catal. 2019, 9, 8453–8463. 10.1021/acscatal.9b01758. DOI

Li M.; Guler U.; Li Y.; Rea A.; Tanyi E. K.; Kim Y.; Noginov M. A.; Song Y.; Boltasseva A.; Shalaev V. M.; et al. Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. ACS Energy Lett. 2018, 3, 1578–1583. 10.1021/acsenergylett.8b00583. DOI

Dobiášová L.; Starý V.; Glogar P.; Valvoda V. Analysis of carbon fibers and carbon composites by asymmetric X-ray diffraction technique. Carbon 1999, 37, 421–425. 10.1016/S0008-6223(98)00207-3. DOI

He H.; Yang F.; Ge Y.; Ran L.; Peng K.; Yi M. Effect of crystallinity of PAN-based carbon fiber surfaces on the formation characteristics of silicon carbide coating. Mater. Res. Express 2019, 6, 085603.10.1088/2053-1591/ab198c. DOI

Zhang H.; Li F.; Jia Q. Preparation of titanium nitride ultrafine powders by sol–gel and microwave carbothermal reduction nitridation methods. Ceram. Int. 2009, 35, 1071–1075. 10.1016/j.ceramint.2008.04.027. DOI

Tang S.; Cheng Q.; Zhao J.; Liang J.; Liu C.; Lan Q.; Cao Y.-C.; Liu J. Preparation of Titanium nitride nanomaterials for electrode and application in energy storage. Results Phys. 2017, 7, 1198–1201. 10.1016/j.rinp.2017.03.006. DOI

Hsu C.-H.; Cloutier S. G.; Palefsky S.; Xu J. Synthesis of Diamond Nanowires Using Atmospheric-Pressure Chemical Vapor Deposition. Nano Lett. 2010, 10, 3272–3276. 10.1021/nl100616x. PubMed DOI

Liu Y.; Quan X.; Fan X.; Wang H.; Chen S. High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon. Angew. Chem., Int. Ed. 2015, 54, 6837–6841. 10.1002/anie.201502396. PubMed DOI

Cheng Y. H.; Tay B. K.; Lau S. P.; Kupfer H.; Richter F. Substrate bias dependence of Raman spectra for TiN films deposited by filtered cathodic vacuum arc. J. Appl. Phys. 2002, 92, 1845–1849. 10.1063/1.1491588. DOI

Saoula N.; Djerourou S.; Yahiaoui K.; Henda K.; Kesri R.; Erasmus R. M.; Comins J. D. Study of the deposition of Ti/TiN multilayers by magnetron sputtering. Surf. Interface Anal. 2010, 42, 1176–1179. 10.1002/sia.3299. DOI

Hansen K.; Cardona M.; Dutta A.; Yang C. Plasma Enhanced Atomic Layer Deposition of Plasmonic TiN Ultrathin Films Using TDMATi and NH3. Materials 2020, 13, 1058.10.3390/ma13051058. PubMed DOI PMC

Govorov A. O.; Zhang W.; Skeini T.; Richardson H.; Lee J.; Kotov N. A. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 2006, 1, 84.10.1007/s11671-006-9015-7. DOI

Baffou G.; Berto P.; Bermúdez Ureña E.; Quidant R.; Monneret S.; Polleux J.; Rigneault H. Photoinduced Heating of Nanoparticle Arrays. ACS Nano 2013, 7, 6478–6488. 10.1021/nn401924n. PubMed DOI

Guler U.; Zemlyanov D.; Kim J.; Wang Z.; Chandrasekar R.; Meng X.; Stach E.; Kildishev A. V.; Shalaev V. M.; Boltasseva A. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide. Adv. Opt. Mater. 2017, 5, 1600717.10.1002/adom.201600717. DOI

Reiche S.; Blume R.; Zhao X. C.; Su D.; Kunkes E.; Behrens M.; Schlögl R. Reactivity of mesoporous carbon against water – An in-situ XPS study. Carbon 2014, 77, 175–183. 10.1016/j.carbon.2014.05.019. DOI

Godet C.; Sabbah H.; Hervé M.; Ababou-Girard S.; Députier S.; Perrin A.; Guilloux-Viry M.; Solal F. Thermal stability of perfluorinated molecular monolayers immobilized on pulsed laser deposited amorphous carbon surfaces. IOP Conf. Ser.: Mater. Sci. Eng. 2010, 16, 012003.10.1088/1757-899x/16/1/012003. DOI

Panomsuwan G.; Saito N.; Ishizaki T. Simple one-step synthesis of fluorine-doped carbon nanoparticles as potential alternative metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 9972–9981. 10.1039/C5TA00244C. DOI

Jin T.; Chen J.; Wang C.; Qian Y.; Lu L. Facile synthesis of fluorine-doped graphene aerogel with rich semi-ionic C–F bonds for high-performance supercapacitor application. J. Mater. Sci. 2020, 55, 12103–12113. 10.1007/s10853-020-04821-1. DOI

Sun X.; Zhang Y.; Song P.; Pan J.; Zhuang L.; Xu W.; Xing W. Fluorine-Doped Carbon Blacks: Highly Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS Catal. 2013, 3, 1726–1729. 10.1021/cs400374k. DOI

Rabiee H.; Ge L.; Zhang X.; Hu S.; Li M.; Yuan Z. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ. Sci. 2021, 14, 1959–2008. 10.1039/D0EE03756G. DOI

Pham T. H. M.; Zhang J.; Li M.; Shen T.-H.; Ko Y.; Tileli V.; Luo W.; Züttel A. Enhanced Electrocatalytic CO2 Reduction to C2+ Products by Adjusting the Local Reaction Environment with Polymer Binders. Adv. Energy Mater. 2022, 12, 2103663.10.1002/aenm.202103663. DOI

Chan M.-H.; Lu F.-H. X-ray photoelectron spectroscopy analyses of titanium oxynitride films prepared by magnetron sputtering using air/Ar mixtures. Thin Solid Films 2009, 517, 5006–5009. 10.1016/j.tsf.2009.03.100. DOI

Avasarala B.; Haldar P. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochim. Acta 2010, 55, 9024–9034. 10.1016/j.electacta.2010.08.035. DOI

Zgrabik C. M.; Hu E. L. Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications. Opt. Mater. Express 2015, 5, 2786–2797. 10.1364/OME.5.002786. DOI

Jiang S.; Yi B.; Zhang H.; Song W.; Bai Y.; Yu H.; Shao Z. Vertically Aligned Titanium Nitride Nanorod Arrays as Supports of Platinum–Palladium–Cobalt Catalysts for Thin-Film Proton Exchange Membrane Fuel Cell Electrodes. ChemElectroChem 2016, 3, 734–740. 10.1002/celc.201500571. DOI

Chisaka M. Creation of oxygen reduction reaction active sites on titanium oxynitride without increasing the nitrogen doping level. Phys. Chem. Chem. Phys. 2018, 20, 15613–15617. 10.1039/C8CP01420E. PubMed DOI

Chang C.-C.; Nogan J.; Yang Z.-P.; Kort-Kamp W. J. M.; Ross W.; Luk T. S.; Dalvit D. A. R.; Azad A. K.; Chen H.-T. Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering. Sci. Rep. 2019, 9, 15287.10.1038/s41598-019-51236-3. PubMed DOI PMC

Zhao K.; Su Y.; Quan X.; Liu Y.; Chen S.; Yu H. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 2018, 357, 118–126. 10.1016/j.jcat.2017.11.008. DOI

Wang Y.; Zhang D.; Liu H. A study of the catalysis of cobalt hydroxide towards the oxygen reduction in alkaline media. J. Power Sources 2010, 195, 3135–3139. 10.1016/j.jpowsour.2009.11.112. DOI

Szwabińska K.; Lota G. Mixed Diffusion-Kinetic Control of H2O2 Oxidation at an Oxide-Covered Platinum Electrode in Alkaline Electrolyte: Implications for Oxygen Electroreduction Studies with a Rotating Ring Disk Electrode. ChemElectroChem 2021, 8, 839–849. 10.1002/celc.202001507. DOI

Kralj S.; Longobardo F.; Iglesias D.; Bevilacqua M.; Tavagnacco C.; Criado A.; Delgado Jaen J. J.; Makovec D.; Marchesan S.; Melchionna M.; et al. Ex-Solution Synthesis of Sub-5-nm FeOx Nanoparticles on Mesoporous Hollow N,O-Doped Carbon Nanoshells for Electrocatalytic Oxygen Reduction. ACS Appl. Nano Mater. 2019, 2, 6092–6097. 10.1021/acsanm.9b01511. DOI

Yang K.; Kas R.; Smith W. A.; Burdyny T. Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction. ACS Energy Lett. 2021, 6, 33–40. 10.1021/acsenergylett.0c02184. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...