Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H2O2 Electrosynthesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37560189
PubMed Central
PMC10407842
DOI
10.1021/acscatal.3c01837
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Large-scale development of electrochemical cells is currently hindered by the lack of Earth-abundant electrocatalysts with high catalytic activity, product selectivity, and interfacial mass transfer. Herein, we developed an electrocatalyst fabrication approach which responds to these requirements by irradiating plasmonic titanium nitride (TiN) nanocubes self-assembled on a carbon gas diffusion layer in the presence of polymeric binders. The localized heating produced upon illumination creates unique conditions for the formation of TiN/F-doped carbon hybrids that show up to nearly 20 times the activity of the pristine electrodes. In alkaline conditions, they exhibit enhanced stability, a maximum H2O2 selectivity of 90%, and achieve a H2O2 productivity of 207 mmol gTiN-1 h-1 at 0.2 V vs RHE. A detailed electrochemical investigation with different electrode arrangements demonstrated the key role of nanocomposite formation to achieve high currents. In particular, an increased TiOxNy surface content promoted a higher H2O2 selectivity, and fluorinated nanocarbons imparted good stability to the electrodes due to their superhydrophobic properties.
Zobrazit více v PubMed
Govind Rajan A.; Martirez J. M. P.; Carter E. A. Why Do We Use the Materials and Operating Conditions We Use for Heterogeneous (Photo)Electrochemical Water Splitting?. ACS Catal. 2020, 10, 11177–11234. 10.1021/acscatal.0c01862. DOI
Yu Z.-Y.; Duan Y.; Feng X.-Y.; Yu X.; Gao M.-R.; Yu S.-H. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv. Mater. 2021, 33, 2007100.10.1002/adma.202007100. PubMed DOI
Seh Z. W.; Kibsgaard J.; Dickens C. F.; Chorkendorff I.; Nørskov J. K.; Jaramillo T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad499810.1126/science.aad4998. PubMed DOI
Stephens I. E. L.; Chan K.; Bagger A.; Boettcher S. W.; Bonin J.; Boutin E.; Buckley A. K.; Buonsanti R.; Cave E. R.; Chang X.; et al. 2022 roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 2022, 4, 042003.10.1088/2515-7655/ac7823. DOI
Sun Y.; Han L.; Strasser P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605–6631. 10.1039/D0CS00458H. PubMed DOI
Shi X.; Back S.; Gill T. M.; Siahrostami S.; Zheng X. Electrochemical Synthesis of H2O2 by Two-Electron Water Oxidation Reaction. Chem 2021, 7, 38–63. 10.1016/j.chempr.2020.09.013. DOI
Kirubakaran A.; Jain S.; Nema R. K. A review on fuel cell technologies and power electronic interface. Renewable Sustainable Energy Rev. 2009, 13, 2430–2440. 10.1016/j.rser.2009.04.004. DOI
Fan L.; Tu Z.; Chan S. H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. 10.1016/j.egyr.2021.08.003. DOI
Liu Q.; Pan Z.; Wang E.; An L.; Sun G. Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Mater. 2020, 27, 478–505. 10.1016/j.ensm.2019.12.011. DOI
Li M.; Bi X.; Wang R.; Li Y.; Jiang G.; Li L.; Zhong C.; Chen Z.; Lu J. Relating Catalysis between Fuel Cell and Metal-Air Batteries. Matter 2020, 2, 32–49. 10.1016/j.matt.2019.10.007. DOI
Jiang Y.; Ni P.; Chen C.; Lu Y.; Yang P.; Kong B.; Fisher A.; Wang X. Selective Electrochemical H2O2 Production through Two-Electron Oxygen Electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.10.1002/aenm.201801909. DOI
Hommura S.; Kawahara K.; Shimohira T.; Teraoka Y. Development of a Method for Clarifying the Perfluorosulfonated Membrane Degradation Mechanism in a Fuel Cell Environment. J. Electrochem. Soc. 2008, 155, A29.10.1149/1.2800171. DOI
Brillas E.; Alcaide F.; Cabot P.-L. s. A small-scale flow alkaline fuel cell for on-site production of hydrogen peroxide. Electrochim. Acta 2002, 48, 331–340. 10.1016/S0013-4686(02)00665-5. DOI
Yamanaka I.; Onizawa T.; Takenaka S.; Otsuka K. Direct and Continuous Production of Hydrogen Peroxide with 93 % Selectivity Using a Fuel-Cell System. Angew. Chem., Int. Ed. 2003, 42, 3653–3655. 10.1002/anie.200351343. PubMed DOI
Yamanaka I.; Hashimoto T.; Ichihashi R.; Otsuka K. Direct synthesis of H2O2 acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H2/O2 fuel cell. Electrochim. Acta 2008, 53, 4824–4832. 10.1016/j.electacta.2008.02.009. DOI
Yang S.; Verdaguer-Casadevall A.; Arnarson L.; Silvioli L.; Čolić V.; Frydendal R.; Rossmeisl J.; Chorkendorff I.; Stephens I. E. L. Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. ACS Catal. 2018, 8, 4064–4081. 10.1021/acscatal.8b00217. DOI
Dong K.; Liang J.; Wang Y.; Zhang L.; Xu Z.; Sun S.; Luo Y.; Li T.; Liu Q.; Li N.; et al. Conductive Two-Dimensional Magnesium Metal–Organic Frameworks for High-Efficiency O2 Electroreduction to H2O2. ACS Catal. 2022, 12, 6092–6099. 10.1021/acscatal.2c00819. DOI
Du J.; Jiang S.; Zhang R.; Wang P.; Ma C.; Zhao R.; Cui C.; Zhang Y.; Kang Y. Generation of Pd–O for Promoting Electrochemical H2O2 Production. ACS Catal. 2023, 13, 6887–6892. 10.1021/acscatal.3c00449. DOI
Kodama K.; Nagai T.; Kuwaki A.; Jinnouchi R.; Morimoto Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 2021, 16, 140–147. 10.1038/s41565-020-00824-w. PubMed DOI
Perazzolo V.; Durante C.; Pilot R.; Paduano A.; Zheng J.; Rizzi G. A.; Martucci A.; Granozzi G.; Gennaro A. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 2015, 95, 949–963. 10.1016/j.carbon.2015.09.002. DOI
Lu Z.; Chen G.; Siahrostami S.; Chen Z.; Liu K.; Xie J.; Liao L.; Wu T.; Lin D.; Liu Y.; et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162. 10.1038/s41929-017-0017-x. DOI
Iglesias D.; Giuliani A.; Melchionna M.; Marchesan S.; Criado A.; Nasi L.; Bevilacqua M.; Tavagnacco C.; Vizza F.; Prato M.; et al. N-Doped Graphitized Carbon Nanohorns as a Forefront Electrocatalyst in Highly Selective O2 Reduction to H2O2. Chem 2018, 4, 106–123. 10.1016/j.chempr.2017.10.013. DOI
Zhang Y.; Melchionna M.; Medved M.; Błoński P.; Steklý T.; Bakandritsos A.; Kment Š.; Zbořil R.; Otyepka M.; Fornaserio P.; et al. Enhanced On-Site Hydrogen Peroxide Electrosynthesis by a Selectively Carboxylated N-Doped Graphene Catalyst. ChemCatChem 2021, 13, 4372–4383. 10.1002/cctc.202100805. DOI
Dong S.; Chen X.; Zhang X.; Cui G. Nanostructured transition metal nitrides for energy storage and fuel cells. Coord. Chem. Rev. 2013, 257, 1946–1956. 10.1016/j.ccr.2012.12.012. DOI
Cao B.; Veith G. M.; Diaz R. E.; Liu J.; Stach E. A.; Adzic R. R.; Khalifah P. G. Cobalt Molybdenum Oxynitrides: Synthesis, Structural Characterization, and Catalytic Activity for the Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2013, 52, 10753–10757. 10.1002/anie.201303197. PubMed DOI
Zhang J.; Hu H.; Liu X.; Li D. S. Development of the applications of titanium nitride in fuel cells. Mater. Today Chem. 2019, 11, 42–59. 10.1016/j.mtchem.2018.10.005. DOI
Zeng R.; Yang Y.; Feng X.; Li H.; Gibbs L. M.; DiSalvo F. J.; Abruña H. D. Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Sci. Adv. 2022, 8, eabj158410.1126/sciadv.abj1584. PubMed DOI PMC
Yang N.; Zhu X.; Wang G.; Zhou L.; Zhu X.; Pan J.; Yu W.; Xia C.; Tian C. Pyrolysis-Free Mechanochemical Conversion of Small Organic Molecules into Metal-Free Heteroatom-Doped Mesoporous Carbons for Efficient Electrosynthesis of Hydrogen Peroxide. ACS Mater. Lett. 2023, 5, 379–387. 10.1021/acsmaterialslett.2c01005. DOI
Zeng S.; Wang S.; Zhuang H.; Lu B.; Li C.; Wang Y.; Wang G. Fluorine-doped carbon: A metal-free electrocatalyst for oxygen reduction to peroxide. Electrochim. Acta 2022, 420, 140460.10.1016/j.electacta.2022.140460. DOI
Chang Y.; Chen J.; Jia J.; Hu X.; Yang H.; Jia M.; Wen Z. The fluorine-doped and defects engineered carbon nanosheets as advanced electrocatalysts for oxygen electroreduction. Appl. Catal., B 2021, 284, 119721.10.1016/j.apcatb.2020.119721. DOI
Jia N.; Yang T.; Shi S.; Chen X.; An Z.; Chen Y.; Yin S.; Chen P. N,F-Codoped Carbon Nanocages: An Efficient Electrocatalyst for Hydrogen Peroxide Electroproduction in Alkaline and Acidic Solutions. ACS Sustainable Chem. Eng. 2020, 8, 2883–2891. 10.1021/acssuschemeng.9b07047. DOI
Patsalas P.; Kalfagiannis N.; Kassavetis S.; Abadias G.; Bellas D. V.; Lekka C.; Lidorikis E. Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Mater. Sci. Eng., R 2018, 123, 1–55. 10.1016/j.mser.2017.11.001. DOI
Li W.; Guler U.; Kinsey N.; Naik G. V.; Boltasseva A.; Guan J.; Shalaev V. M.; Kildishev A. V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26, 7959–7965. 10.1002/adma.201401874. PubMed DOI
Krekeler T.; Rout S. S.; Krishnamurthy G. V.; Störmer M.; Arya M.; Ganguly A.; Sutherland D. S.; Bozhevolnyi S. I.; Ritter M.; Pedersen K.; et al. Unprecedented Thermal Stability of Plasmonic Titanium Nitride Films up to 1400 °C. Adv. Opt. Mater. 2021, 9, 2100323.10.1002/adom.202100323. DOI
Tian X.; Luo J.; Nan H.; Fu Z.; Zeng J.; Liao S. Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 16801–16809. 10.1039/C5TA04410C. DOI
Luo J.; Tian X.; Zeng J.; Li Y.; Song H.; Liao S. Limitations and Improvement Strategies for Early-Transition-Metal Nitrides as Competitive Catalysts toward the Oxygen Reduction Reaction. ACS Catal. 2016, 6, 6165–6174. 10.1021/acscatal.6b01618. DOI
Seifitokaldani A.; Savadogo O.; Perrier M. Stability and catalytic activity of titanium oxy-nitride catalyst prepared by in-situ urea-based sol–gel method for the oxygen reduction reaction (ORR) in acid medium. Int. J. Hydrogen Energy 2015, 40, 10427–10438. 10.1016/j.ijhydene.2015.06.002. DOI
Chisaka M.; Ando Y.; Itagaki N. Activity and durability of the oxygen reduction reaction in a nitrogen-doped rutile-shell on TiN-core nanocatalysts synthesised via solution-phase combustion. J. Mater. Chem. A 2016, 4, 2501–2508. 10.1039/C5TA08235H. DOI
Chisaka M.; Yamamoto Y.; Itagaki N.; Hattori Y. Active Site Formation for Oxygen Reduction Reaction on Carbon-Support-Free Titanium Oxynitride with Boosted Activity in Acidic Media. ACS Appl. Energy Mater. 2018, 1, 211–219. 10.1021/acsaem.7b00100. DOI
Chisaka M.; Xiang R.; Maruyama S.; Daiguji H. Efficient Phosphorus Doping into the Surface Oxide Layers on TiN to Enhance Oxygen Reduction Reaction Activity in Acidic Media. ACS Appl. Energy Mater. 2020, 3, 9866–9876. 10.1021/acsaem.0c01576. DOI
Chisaka M.; Ando Y.; Yamamoto Y.; Itagaki N. A Carbon-Support-Free Titanium Oxynitride Catalyst for Proton Exchange Membrane Fuel Cell Cathodes. Electrochim. Acta 2016, 214, 165–172. 10.1016/j.electacta.2016.08.032. DOI
Seifitokaldani A.; Oishi K.; Perrier M.; Savadogo O. Electrochemical and physicochemical properties of titanium Oxy-nitride electrocatalyst prepared by sol-gel methods for the oxygen reduction reaction purposes. J. Solid State Electrochem. 2015, 19, 3097–3109. 10.1007/s10008-015-2930-8. DOI
Kreider M. E.; Stevens M. B.; Liu Y.; Patel A. M.; Statt M. J.; Gibbons B. M.; Gallo A.; Ben-Naim M.; Mehta A.; Davis R. C.; et al. Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chem. Mater. 2020, 32, 2946–2960. 10.1021/acs.chemmater.9b05212. DOI
Dong K.; Liang J.; Wang Y.; Ren Y.; Xu Z.; Zhou H.; Li L.; Liu Q.; Luo Y.; Li T.; et al. Plasma-induced defective TiO2-x with oxygen vacancies: A high-active and robust bifunctional catalyst toward H2O2 electrosynthesis. Chem. Catal. 2021, 1, 1437–1448. 10.1016/j.checat.2021.10.011. DOI
Naldoni A.; Kudyshev Z. A.; Mascaretti L.; Sarmah S. P.; Rej S.; Froning J. P.; Tomanec O.; Yoo J. E.; Wang D.; Kment Š.; et al. Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. Nano Lett. 2020, 20, 3663–3672. 10.1021/acs.nanolett.0c00594. PubMed DOI
Guler U.; Shalaev V. M.; Boltasseva A. Nanoparticle plasmonics: going practical with transition metal nitrides. Mater. Today 2015, 18, 227–237. 10.1016/j.mattod.2014.10.039. DOI
Baffou G.; Cichos F.; Quidant R. Applications and challenges of thermoplasmonics. Nat. Mater. 2020, 19, 946–958. 10.1038/s41563-020-0740-6. PubMed DOI
Boyd D. A.; Greengard L.; Brongersma M.; El-Naggar M. Y.; Goodwin D. G. Plasmon-Assisted Chemical Vapor Deposition. Nano Lett. 2006, 6, 2592–2597. 10.1021/nl062061m. PubMed DOI
Martino G. D.; Michaelis F. B.; Salmon A. R.; Hofmann S.; Baumberg J. Controlling Nanowire Growth by Light. Nano Lett. 2015, 15, 7452–7457. 10.1021/acs.nanolett.5b02953. PubMed DOI
Violi I. L.; Gargiulo J.; von Bilderling C.; Cortés E.; Stefani F. D. Light-Induced Polarization-Directed Growth of Optically Printed Gold Nanoparticles. Nano Lett. 2016, 16, 6529–6533. 10.1021/acs.nanolett.6b03174. PubMed DOI
Kamarudheen R.; Kumari G.; Baldi A. Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles. Nat. Commun. 2020, 11, 3957.10.1038/s41467-020-17789-y. PubMed DOI PMC
Mascaretti L.; Schirato A.; Zbořil R.; Kment Š.; Schmuki P.; Alabastri A.; Naldoni A. Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. Nano Energy 2021, 83, 105828.10.1016/j.nanoen.2021.105828. DOI
Cortés E.; Xie W.; Cambiasso J.; Jermyn A. S.; Sundararaman R.; Narang P.; Schlücker S.; Maier S. A. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 2017, 8, 14880.10.1038/ncomms14880. PubMed DOI PMC
Zhan C.; Wang Q.-X.; Yi J.; Chen L.; Wu D.-Y.; Wang Y.; Xie Z.-X.; Moskovits M.; Tian Z.-Q. Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Sci. Adv. 2021, 7, eabf096210.1126/sciadv.abf0962. PubMed DOI PMC
Mascaretti L.; Schirato A.; Fornasiero P.; Boltasseva A.; Shalaev V. M.; Alabastri A.; Naldoni A. Challenges and prospects of plasmonic metasurfaces for photothermal catalysis. Nanophotonics 2022, 11, 3035–3056. 10.1515/nanoph-2022-0073. DOI
Burdyny T.; Smith W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 2019, 12, 1442–1453. 10.1039/C8EE03134G. DOI
Loukrakpam R.; Ferreira Gomes B.; Kottakkat T.; Roth C. A bird’s eye perspective of the measurement of oxygen reduction reaction in gas diffusion electrode half-cell set-ups for Pt electrocatalysts in acidic media. J. Phys. Mater. 2021, 4, 044004.10.1088/2515-7639/ac0319. DOI
Xing Z.; Shi K.; Parsons Z. S.; Feng X. Interplay of Active Sites and Microenvironment in High-Rate Electrosynthesis of H2O2 on Doped Carbon. ACS Catal. 2023, 13, 2780–2789. 10.1021/acscatal.2c05639. DOI
Cao P.; Quan X.; Zhao K.; Zhao X.; Chen S.; Yu H. Durable and Selective Electrochemical H2O2 Synthesis under a Large Current Enabled by the Cathode with Highly Hydrophobic Three-Phase Architecture. ACS Catal. 2021, 11, 13797–13808. 10.1021/acscatal.1c03236. DOI
Chen L.; Li S.; Yang Z.; Chen C.; Chu C.; Chen B. Enhanced photocatalytic hydrogen peroxide production at a solid-liquid-air interface via microenvironment engineering. Appl. Catal., B 2022, 305, 121066.10.1016/j.apcatb.2022.121066. DOI
Panizza M.; Cerisola G. Electrochemical generation of H2O2 in low ionic strength media on gas diffusion cathode fed with air. Electrochim. Acta 2008, 54, 876–878. 10.1016/j.electacta.2008.07.063. DOI
Van Nguyen T.; Ahosseini A.; Wang X.; Yarlagadda V.; Kwong A.; Weber A. Z.; Deevanhxay P.; Tsushima S.; Hirai S. Hydrophobic Gas-Diffusion Media for Polymer-Electrolyte Fuel Cells by Direct Fluorination. J. Electrochem. Soc. 2015, 162, F1451–F1460. 10.1149/2.0411514jes. DOI
Yu X.; Zhou M.; Ren G.; Ma L. A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chem. Eng. J. 2015, 263, 92–100. 10.1016/j.cej.2014.11.053. DOI
Zhang Q.; Zhou M.; Ren G.; Li Y.; Li Y.; Du X. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat. Commun. 2020, 11, 1731.10.1038/s41467-020-15597-y. PubMed DOI PMC
Zhang Y.; Daniel G.; Lanzalaco S.; Isse A. A.; Facchin A.; Wang A.; Brillas E.; Durante C.; Sirés I. H2O2 production at gas-diffusion cathodes made from agarose-derived carbons with different textural properties for acebutolol degradation in chloride media. J. Hazard. Mater. 2022, 423, 127005.10.1016/j.jhazmat.2021.127005. PubMed DOI
Kim J.; Zhou R.; Murakoshi K.; Yasuda S. Advantage of semi-ionic bonding in fluorine-doped carbon materials for the oxygen evolution reaction in alkaline media. RSC Adv. 2018, 8, 14152–14156. 10.1039/C8RA01636D. PubMed DOI PMC
Xing Z.; Hu L.; Ripatti D. S.; Hu X.; Feng X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 2021, 12, 136.10.1038/s41467-020-20397-5. PubMed DOI PMC
Gubbins K. E.; Walker R. D. The Solubility and Diffusivity of Oxygen in Electrolytic Solutions. J. Electrochem. Soc. 1965, 112, 469.10.1149/1.2423575. DOI
Itoe R. N.; Wesson G. D.; Kalu E. E. Evaluation of Oxygen Transport Parameters in H[sub 2]SO[sub 4]-CH[sub 3]OH Mixtures Using Electrochemical Methods. J. Electrochem. Soc. 2000, 147, 2445.10.1149/1.1393551. DOI
Wang X.; Zhou J.; Fu H.; Li W.; Fan X.; Xin G.; Zheng J.; Li X. MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2014, 2, 14064–14070. 10.1039/C4TA01506A. DOI
Wang Y. L.; Gurses S.; Felvey N.; Boubnov A.; Mao S. S.; Kronawitter C. X. In Situ Deposition of Pd during Oxygen Reduction Yields Highly Selective and Active Electrocatalysts for Direct H2O2 Production. ACS Catal. 2019, 9, 8453–8463. 10.1021/acscatal.9b01758. DOI
Li M.; Guler U.; Li Y.; Rea A.; Tanyi E. K.; Kim Y.; Noginov M. A.; Song Y.; Boltasseva A.; Shalaev V. M.; et al. Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. ACS Energy Lett. 2018, 3, 1578–1583. 10.1021/acsenergylett.8b00583. DOI
Dobiášová L.; Starý V.; Glogar P.; Valvoda V. Analysis of carbon fibers and carbon composites by asymmetric X-ray diffraction technique. Carbon 1999, 37, 421–425. 10.1016/S0008-6223(98)00207-3. DOI
He H.; Yang F.; Ge Y.; Ran L.; Peng K.; Yi M. Effect of crystallinity of PAN-based carbon fiber surfaces on the formation characteristics of silicon carbide coating. Mater. Res. Express 2019, 6, 085603.10.1088/2053-1591/ab198c. DOI
Zhang H.; Li F.; Jia Q. Preparation of titanium nitride ultrafine powders by sol–gel and microwave carbothermal reduction nitridation methods. Ceram. Int. 2009, 35, 1071–1075. 10.1016/j.ceramint.2008.04.027. DOI
Tang S.; Cheng Q.; Zhao J.; Liang J.; Liu C.; Lan Q.; Cao Y.-C.; Liu J. Preparation of Titanium nitride nanomaterials for electrode and application in energy storage. Results Phys. 2017, 7, 1198–1201. 10.1016/j.rinp.2017.03.006. DOI
Hsu C.-H.; Cloutier S. G.; Palefsky S.; Xu J. Synthesis of Diamond Nanowires Using Atmospheric-Pressure Chemical Vapor Deposition. Nano Lett. 2010, 10, 3272–3276. 10.1021/nl100616x. PubMed DOI
Liu Y.; Quan X.; Fan X.; Wang H.; Chen S. High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon. Angew. Chem., Int. Ed. 2015, 54, 6837–6841. 10.1002/anie.201502396. PubMed DOI
Cheng Y. H.; Tay B. K.; Lau S. P.; Kupfer H.; Richter F. Substrate bias dependence of Raman spectra for TiN films deposited by filtered cathodic vacuum arc. J. Appl. Phys. 2002, 92, 1845–1849. 10.1063/1.1491588. DOI
Saoula N.; Djerourou S.; Yahiaoui K.; Henda K.; Kesri R.; Erasmus R. M.; Comins J. D. Study of the deposition of Ti/TiN multilayers by magnetron sputtering. Surf. Interface Anal. 2010, 42, 1176–1179. 10.1002/sia.3299. DOI
Hansen K.; Cardona M.; Dutta A.; Yang C. Plasma Enhanced Atomic Layer Deposition of Plasmonic TiN Ultrathin Films Using TDMATi and NH3. Materials 2020, 13, 1058.10.3390/ma13051058. PubMed DOI PMC
Govorov A. O.; Zhang W.; Skeini T.; Richardson H.; Lee J.; Kotov N. A. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 2006, 1, 84.10.1007/s11671-006-9015-7. DOI
Baffou G.; Berto P.; Bermúdez Ureña E.; Quidant R.; Monneret S.; Polleux J.; Rigneault H. Photoinduced Heating of Nanoparticle Arrays. ACS Nano 2013, 7, 6478–6488. 10.1021/nn401924n. PubMed DOI
Guler U.; Zemlyanov D.; Kim J.; Wang Z.; Chandrasekar R.; Meng X.; Stach E.; Kildishev A. V.; Shalaev V. M.; Boltasseva A. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide. Adv. Opt. Mater. 2017, 5, 1600717.10.1002/adom.201600717. DOI
Reiche S.; Blume R.; Zhao X. C.; Su D.; Kunkes E.; Behrens M.; Schlögl R. Reactivity of mesoporous carbon against water – An in-situ XPS study. Carbon 2014, 77, 175–183. 10.1016/j.carbon.2014.05.019. DOI
Godet C.; Sabbah H.; Hervé M.; Ababou-Girard S.; Députier S.; Perrin A.; Guilloux-Viry M.; Solal F. Thermal stability of perfluorinated molecular monolayers immobilized on pulsed laser deposited amorphous carbon surfaces. IOP Conf. Ser.: Mater. Sci. Eng. 2010, 16, 012003.10.1088/1757-899x/16/1/012003. DOI
Panomsuwan G.; Saito N.; Ishizaki T. Simple one-step synthesis of fluorine-doped carbon nanoparticles as potential alternative metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 9972–9981. 10.1039/C5TA00244C. DOI
Jin T.; Chen J.; Wang C.; Qian Y.; Lu L. Facile synthesis of fluorine-doped graphene aerogel with rich semi-ionic C–F bonds for high-performance supercapacitor application. J. Mater. Sci. 2020, 55, 12103–12113. 10.1007/s10853-020-04821-1. DOI
Sun X.; Zhang Y.; Song P.; Pan J.; Zhuang L.; Xu W.; Xing W. Fluorine-Doped Carbon Blacks: Highly Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS Catal. 2013, 3, 1726–1729. 10.1021/cs400374k. DOI
Rabiee H.; Ge L.; Zhang X.; Hu S.; Li M.; Yuan Z. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ. Sci. 2021, 14, 1959–2008. 10.1039/D0EE03756G. DOI
Pham T. H. M.; Zhang J.; Li M.; Shen T.-H.; Ko Y.; Tileli V.; Luo W.; Züttel A. Enhanced Electrocatalytic CO2 Reduction to C2+ Products by Adjusting the Local Reaction Environment with Polymer Binders. Adv. Energy Mater. 2022, 12, 2103663.10.1002/aenm.202103663. DOI
Chan M.-H.; Lu F.-H. X-ray photoelectron spectroscopy analyses of titanium oxynitride films prepared by magnetron sputtering using air/Ar mixtures. Thin Solid Films 2009, 517, 5006–5009. 10.1016/j.tsf.2009.03.100. DOI
Avasarala B.; Haldar P. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochim. Acta 2010, 55, 9024–9034. 10.1016/j.electacta.2010.08.035. DOI
Zgrabik C. M.; Hu E. L. Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications. Opt. Mater. Express 2015, 5, 2786–2797. 10.1364/OME.5.002786. DOI
Jiang S.; Yi B.; Zhang H.; Song W.; Bai Y.; Yu H.; Shao Z. Vertically Aligned Titanium Nitride Nanorod Arrays as Supports of Platinum–Palladium–Cobalt Catalysts for Thin-Film Proton Exchange Membrane Fuel Cell Electrodes. ChemElectroChem 2016, 3, 734–740. 10.1002/celc.201500571. DOI
Chisaka M. Creation of oxygen reduction reaction active sites on titanium oxynitride without increasing the nitrogen doping level. Phys. Chem. Chem. Phys. 2018, 20, 15613–15617. 10.1039/C8CP01420E. PubMed DOI
Chang C.-C.; Nogan J.; Yang Z.-P.; Kort-Kamp W. J. M.; Ross W.; Luk T. S.; Dalvit D. A. R.; Azad A. K.; Chen H.-T. Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering. Sci. Rep. 2019, 9, 15287.10.1038/s41598-019-51236-3. PubMed DOI PMC
Zhao K.; Su Y.; Quan X.; Liu Y.; Chen S.; Yu H. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 2018, 357, 118–126. 10.1016/j.jcat.2017.11.008. DOI
Wang Y.; Zhang D.; Liu H. A study of the catalysis of cobalt hydroxide towards the oxygen reduction in alkaline media. J. Power Sources 2010, 195, 3135–3139. 10.1016/j.jpowsour.2009.11.112. DOI
Szwabińska K.; Lota G. Mixed Diffusion-Kinetic Control of H2O2 Oxidation at an Oxide-Covered Platinum Electrode in Alkaline Electrolyte: Implications for Oxygen Electroreduction Studies with a Rotating Ring Disk Electrode. ChemElectroChem 2021, 8, 839–849. 10.1002/celc.202001507. DOI
Kralj S.; Longobardo F.; Iglesias D.; Bevilacqua M.; Tavagnacco C.; Criado A.; Delgado Jaen J. J.; Makovec D.; Marchesan S.; Melchionna M.; et al. Ex-Solution Synthesis of Sub-5-nm FeOx Nanoparticles on Mesoporous Hollow N,O-Doped Carbon Nanoshells for Electrocatalytic Oxygen Reduction. ACS Appl. Nano Mater. 2019, 2, 6092–6097. 10.1021/acsanm.9b01511. DOI
Yang K.; Kas R.; Smith W. A.; Burdyny T. Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction. ACS Energy Lett. 2021, 6, 33–40. 10.1021/acsenergylett.0c02184. DOI
Single Atom Cocatalysts in Photocatalysis