An Effect of Cyclosporin A in a Treatment of Temporal Bone Defect Using hBM-MSCs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio oncol/surg
Charles University, Medical Faculty Hradec Kralove
PubMed
36428486
PubMed Central
PMC9687466
DOI
10.3390/biomedicines10112918
PII: biomedicines10112918
Knihovny.cz E-zdroje
- Klíčová slova
- cholesteatoma, cyclosporin A, mesenchymal stem cells, osteogenesis, temporal bone,
- Publikační typ
- časopisecké články MeSH
Background. The treatment of middle ear cholesteatoma requires surgical treatment and the reconstruction of the temporal bone, which represents an ongoing problem. Otologists have focused on the research of materials allowing an airy middle ear and the preservation of hearing function to reconstruct the temporal bone. Methods. This study evaluated the effect of cyclosporin A (CsA) and a combined biomaterial in the healing process of postoperative temporal bone defects in an animal model. Cultured human Bone Marrow Mesenchymal Stromal Cells (hBM-MSCs) were mixed with hydroxyapatite (Cem-Ostetic®), and subsequently applied as a bone substitute after middle ear surgery, showing that the therapeutic potential of hBM-MSCs associated with bone regeneration and replacement is directly influenced by CsA, confirming that it promotes the survival of MSCs in vivo. Results. The therapeutic efficacy of the combination of MSCs with CsA is greater than the sole application of MSCs in a hydroxyapatite carrier. Conclusion. The reconstruction of a temporal bone defect using hBM-MSCs requires an immunosuppressant to improve the results of treatment.
Zobrazit více v PubMed
Maksimović Z., Rukovaniski M. Intracranial complications of cholesteatoma. Acta Otorhinolaryngol. Belg. 1993;47:33–36. PubMed
Klinickava M.M., Avnali G., Tuz M., Bagci Ö. Is there a systematic inflammatory effect of cholesteatoma? Int. Arch. Otorhinolaryngol. 2017;21:42–45. PubMed PMC
Kim C.W., Oh J.I., Choi K.Y., Park S.M., Park M.I. A technikue for concurrent procedure of mastoid obliteration and meatoplasty after cana wall down mastoidectomy. Auris Nasus Larynx. 2012;39:557–561. doi: 10.1016/j.anl.2011.11.004. PubMed DOI
Skoulakis C., Koltsidopoulos P., Iyer A., Kontorinis G. Mastoid obliteration with systemic materials: A review of the literature. J. Int. Adv. Otol. 2019;15:400–404. doi: 10.5152/iao.2019.7038. PubMed DOI PMC
Skoloudik L., Chrobok V., Kalfert D., Koci Z., Filip S. Multipotent mesenchymal stromal cells in otorhinolaryngology. Med. Hypotheses. 2014;82:769–773. doi: 10.1016/j.mehy.2014.03.022. PubMed DOI
Gamie Z., Mac Farlane R.J., Tomikson A., Moniaki A., Tran G.T., Gamie Y., Mantaralis A., Tsiridis E. Skeletal tissue engineering using mesenchymal or embryonic stem cells: Clinical and experimental data. Expert Opin. Biol. Ther. 2014;14:1611–1639. doi: 10.1517/14712598.2014.945414. PubMed DOI
Hogan W.J., Storb R. Use of cyclosporine in hematopoietic cell transplantation. Transplant. Proc. 2004;36:367–371. doi: 10.1016/j.transproceed.2004.01.043. PubMed DOI
Ou Y., Lin O., Yuan Y., Sun Z., Li P., Wang F., Jiang H., Chen T. Cyclosporin A inhibits adipogenic differentiation and regulates immunomodulatory functions of murine mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2018;498:516–522. PubMed
Ghannam S., Bouffi C., Djouad F., Jorgensen C., Noël D. Immunosuppression by mesenchymal stem cells: Mechanisms and clinical applications. Stem Cell Res. Ther. 2010;1:2. doi: 10.1186/scrt2. PubMed DOI PMC
Liu S., Liu F., Zhou Y., Jin B., Sun O., Guo S. Immunosuppressive property of MSCs mediated by cell surface receptors. Front. Immunol. 2020;11:e1076. doi: 10.3389/fimmu.2020.01076. PubMed DOI PMC
Skoloudik L., Chrobok V., Koci Z., Popelar J., Syka J., Laco J., Filipova A., Sykova E., Filip S. The transplantation of hBM-MSCs increase bone neo-formation and proserves hearing function in the treatment of temporal bone defects—On the experience of two month follow up. Stem Cell Rev. Rep. 2018;14:860–870. doi: 10.1007/s12015-018-9831-z. PubMed DOI
Suzuki H., Ikezaki S., Imazato K., Koizumi H., Ohbuchi T., Hohei N., Hasihada K. Partial mastoid obliteration combined with soft-wall reconstruction for modele ear cholesteatoma. Ann. Otol. Rhinol. Laryngol. 2014;123:571–575. doi: 10.1177/0003489414525335. PubMed DOI
Weiss N.M., Bächinger D., Botzen J., Grosmann W., Mlynski R. Mastoid cavity obliteration leads to a clinically significant improvement in health-related quality of life. Eur. Arch. Otorhinolaryngol. 2020;277:1637–1643. doi: 10.1007/s00405-020-05881-4. PubMed DOI PMC
Lee H.B., Lim H.J., Cho M., Yang S.M., Park K., Park H.Y., Choung Y.H. Clinival significance of β-tricalcium phosphate and plyposphate for mastoid cavity obliteration during middle ear surgery: Human and animal study. Clin. Exp. Otorhinolaryngol. 2013;6:127–134. doi: 10.3342/ceo.2013.6.3.127. PubMed DOI PMC
Sahli-Vivicorsi S., Alavi Z., Bran W., Cadieu R., Meriot P., Leelere J.C., Marianowski R. Mid-term outcomes of mastoid obliteration with biological hydroxyapatite versus bioglass: A radiological and clinical study. Eur. Arch. Otorhinolaryngol. 2022;279:4379–4388. doi: 10.1007/s00405-022-07262-5. PubMed DOI
Camernik K., Barlic A., Drobnic M., Marc J., Jeras M., Zupan J. Mesenchymal stem cells in the musculoskeletal system: From animal models in human tissue regeneration? Stem Cell Rev Rep. 2018;14:346–369. doi: 10.1007/s12015-018-9800-6. PubMed DOI
Skoloudik L., Chrobok V., Kalfert D., Koci Z., Sykova E., Chumak T., Popelar J., Syka J., Laco J., Dedkova J., et al. Human multipotent mesenchymal cells in the treatment of postoperative temporal bone defect: An animal model. Cell Transpl. 2016;25:1405–1414. doi: 10.3727/096368915X689730. PubMed DOI
Corbett J.M., Hawthorne I., Dunbar H., Coulter I., Chonghaile M.N., Flyn C.M., English K. Cyclosporine A and INFγ licencin enhances human mesenchymal stromal cell potency in a humamised mouse model of acute graft versus host disease. Stem Cell Res. Ther. 2021;12:238. doi: 10.1186/s13287-021-02309-6. PubMed DOI PMC
Hajkova M., Jaburek F., Porubska B., Bohacova P., Holan V., Krulova M. Cyclosporine a promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clin. Sci. 2019;133:2143–2157. doi: 10.1042/CS20190294. PubMed DOI
Weiss A.R.R., Dhalke M.H. Immunomodulationm by mesenchymal stem cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Front. Immunol. 2019;10:1191. doi: 10.3389/fimmu.2019.01191. PubMed DOI PMC
Shrestha M., Nguyen T.T., Park J., Chjoi J.U., Yook S., Jeong J.H. Immunomodulation effect of mesenchymal stem cells in islet transplantation. Biomed. Pharmacother. 2021;142:112042. doi: 10.1016/j.biopha.2021.112042. PubMed DOI
Hajkova M., Javorkova E., Zajicova A., Trosan P., Holan V., Krulova M. Alocal application of mesenchymal stem cells and cyclosporine A attenuates immune response by a switch in macrophage phenotype. J. Tissue Eng. Regen. Med. 2017;11:1456–1465. doi: 10.1002/term.2044. PubMed DOI
Zhou Y., Yamamoto Y., Xiao Z., Ochiva T. The immunomodulatory function of mesenchymal stromal/stem cells mediated via paracrine activity. J. Clin. Med. 2019;8:1025. doi: 10.3390/jcm8071025. PubMed DOI PMC
Jiang W., Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53:e12712. doi: 10.1111/cpr.12712. PubMed DOI PMC
Joel M.D.M., Yuan J., Wang J., Yan Y., Qian H., Zhang X., Xu W., Mao F. MSC: Immunoregulatory effects roles on neutrophils and ecolving clinical potentials. Am. J. Transl. Res. 2019;11:3890–3904. PubMed PMC
Mezey H. Human mesenchymal stem/stromal cells in immune regulation and therapy. Stem Cells Transl. Med. 2022;11:114–134. doi: 10.1093/stcltm/szab020. PubMed DOI PMC
Seebach C., Henrich D., Wilhelm K., Barker J.H., Marzi I. Endothelial progenitor cell improve directly and indirectly early vasularization of mesenchymal stem cell derived bone regeneration in a critical bone defect in rats. Cell Transplant. 2012;21:1667–1677. doi: 10.3727/096368912X638937. PubMed DOI
Rafiee P., Heidemann J., Ogawa H., Johnson N.A., Fisher P., Li M.S., Otterson M.F., Jonson C.P., Binio D. Cyclosporin A differentially inhibits multiple steps in VEGF induced angiogenesis in human microvascular endothelial cells through altered intracellular signaling. Cell Commun. Signal. 2004;2:3. doi: 10.1186/1478-811X-2-3. PubMed DOI PMC
Diomede F., Marconiu D.G., Fonticoli L., Pizzicanella J., Mericiaro I., Bramanti P., Mazzon E., Trubiani O. Functional relationship between osteogenesis and angiogenesis in tissue regeneratrion. Int. J. Mol. Sci. 2020;21:3242. doi: 10.3390/ijms21093242. PubMed DOI PMC
Medhat D., Rodriguez C.I., Infante A. Immunomodulatory effevts of MSCs in bone healing. Int. J. Mol. Sci. 2019;20:5467. doi: 10.3390/ijms20215467. PubMed DOI PMC