Impact of a Breathing Intervention on Engagement of Abdominal, Thoracic, and Subclavian Musculature during Exercise, a Randomized Trial
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
No. 021/2019/S
Grant Agency of University of South Bohemia within the framework of Team grant project
PubMed
34441810
PubMed Central
PMC8397177
DOI
10.3390/jcm10163514
PII: jcm10163514
Knihovny.cz E-resources
- Keywords
- adolescents, breathing exercise, breathing pattern, diaphragm, load,
- Publication type
- Journal Article MeSH
BACKGROUND: Breathing technique may influence endurance exercise performance by reducing overall breathing work and delaying respiratory muscle fatigue. We investigated whether a two-month yoga-based breathing intervention could affect breathing characteristics during exercise. METHODS: Forty-six endurance runners (age = 16.6 ± 1.2 years) were randomized to either a breathing intervention or control group. The contribution of abdominal, thoracic, and subclavian musculature to respiration and ventilation parameters during three different intensities on a cycle ergometer was assessed pre- and post-intervention. RESULTS: Post-intervention, abdominal, thoracic, and subclavian ventilatory contributions were altered at 2 W·kg-1 (27:23:50 to 31:28:41), 3 W·kg-1 (26:22:52 to 28:31:41), and 4 W·kg-1 (24:24:52 to 27:30:43), whereas minimal changes were observed in the control group. More specifically, a significant (p < 0.05) increase in abdominal contribution was observed at rest and during low intensity work (i.e., 2 and 3 W·kg-1), and a decrease in respiratory rate and increase of tidal volume were observed in the experimental group. CONCLUSIONS: These data highlight an increased reliance on more efficient abdominal and thoracic musculature, and less recruitment of subclavian musculature, in young endurance athletes during exercise following a two-month yoga-based breathing intervention. More efficient ventilatory muscular recruitment may benefit endurance performance by reducing energy demand and thus optimize energy requirements for mechanical work.
See more in PubMed
Bravo-Sánchez A., Morán-García J., Abián P., Abián-Vicén J. Association of the Use of the Mobile Phone with Physical Fitness and Academic Performance: A Cross-Sectional Study. Int. J. Environ. Res. Public Health. 2021;18:1042. doi: 10.3390/ijerph18031042. PubMed DOI PMC
Eitivipart A.C., Viriyarojanakul S., Redhead L. Musculoskeletal disorder and pain associated with smartphone use: A systematic review of biomechanical evidence. Hong Kong Physiother. J. 2018;38:77–90. doi: 10.1142/S1013702518300010. PubMed DOI PMC
Depiazzi J., Everard M.L. Dysfunctional breathing and reaching one’s physiological limit as causes of exercise-induced dyspnoea. Breathe. 2016;12:120–129. doi: 10.1183/20734735.007216. PubMed DOI PMC
Chaitow L., Bradley D., Gilbert C. Multidisciplinary Approaches to Breathing Pattern Disorders. Churchill Livingston; London, UK: 2002.
Kaminoff L. What yoga therapists should know about the anatomy of breathing. Int. J. Yoga Therap. 2006;16:67–77. doi: 10.17761/ijyt.16.1.64603tq46513j242. DOI
Pryor J.A., Prasad S.A. Physiotherapy for Respiratory and Cardiac Problems. Churchill Livingstone; Edinburgh, UK: 2002.
Yuan G., Drost N.A., McIvor R.A. Respiratory Rate and Breathing Pattern. McMaster Univ. Med J. 2013;10:23–25.
Aaron E.A., Johnson B.D., Seow C.K., Dempsey J.A. Oxygen cost of exercise hyperpnea: Measurement. J. Appl. Physiol. 1992;72:1810–1817. doi: 10.1152/jappl.1992.72.5.1810. PubMed DOI
Guenette J.A., Sheel A.W. Physiological consequences of a high work of breathing during heavy exercise in humans. J. Sci. Med. Sport. 2007;10:341–350. doi: 10.1016/j.jsams.2007.02.003. PubMed DOI
McArdle W.D., Katch F.I., Katch V.L. Essentials of Exercise Physiology. Lippincott Williams and Wilkins; Baltimore, MD, USA: 2016.
Malátová R., Bahenský P., Mareš M., Rost M. Breathing pattern of restful and deep breathing. In: Zvonař M., Sajdlová Z., editors. Proceedings of the 11th International Conference on Kinanthropology, Brno, Czech Republic, 29 Novermber–1 December 2017. Masarykova Univerzita; Brno, Czech Republic: 2017.
Benchetrit G. Breathing pattern in humans: Diversity and individuality. Respir. Physiol. 2000;122:123–129. doi: 10.1016/S0034-5687(00)00154-7. PubMed DOI
Clifton-Smith T. Recognizing and Treating Breathing Disorders E-Book: A Multidisciplinary Approach. Churchill Livingstone; London, UK: 2014. Breathing pattern disorders and the athlete. DOI
Chaitow L., Bradley D., Gilbert C. Recognizing and Treating Breathing Disorders. A Multidisciplinary Approach. 2nd ed. Churchill Livingston; London, UK: 2014.
Hodges P.W., Heijnen I., Gandevia S.C. Postural activity of the diaphragm is reduced in humans when respiratory demand increases. J. Physiol. 2001;537:999–1008. doi: 10.1113/jphysiol.2001.012648. PubMed DOI PMC
Weavil J.C., Amann M. Neuromuscular fatigue during whole body exercise. Curr. Opin. Physiol. 2019;10:128–136. doi: 10.1016/j.cophys.2019.05.008. PubMed DOI PMC
Hruzevych I., Boguslavska V., Kropta R., Galan Y., Nakonechnyi I., Pityn M. The effectiveness of the endogenous-hypoxic breathing in the physical training of skilled swimmers. J. Phys. Educ. Sport. 2017;17:1009–1016. doi: 10.7752/jpes.2017.s3155. DOI
Kisner C., Colby L.A. Therapeutic Exercise: Foundations and Techniques. 5th ed. FA Davis Company; Philadelphia, PA, USA: 2007. Management of pulmonary conditions; pp. 851–882.
Szczepan S., Danek N., Michalik K., Wróblewska Z., Zatoń K. Influence of a Six-Week Swimming Training with Added Respiratory Dead Space on Respiratory Muscle Strength and Pulmonary Function in Recreational Swimmers. Int. J. Environ. Res. Public Health. 2020;17:5743. doi: 10.3390/ijerph17165743. PubMed DOI PMC
Verges S., Lenherr O., Haner A.C., Schulz C., Spengler C.M. Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;292:R1246–R1253. doi: 10.1152/ajpregu.00409.2006. PubMed DOI
Aliverti A. The respiratory muscles during exercise. Breathe. 2016;12:165–168. doi: 10.1183/20734735.008116. PubMed DOI PMC
Faghy M.A., Brown P.I. Functional training of the inspiratory muscles improves load carriage performance. Ergonomics. 2019;62:1439–1449. doi: 10.1080/00140139.2019.1652352. PubMed DOI
Hinde K.L., Low C., Lloyd R., Cooke C.B. Inspiratory muscle training at sea level improves the strength of inspiratory muscles during load carriage in cold-hypoxia. Ergonomics. 2020;63:1584–1598. doi: 10.1080/00140139.2020.1807613. PubMed DOI
Göhl O., Walker D.J., Walterspacher S., Langer D., Spengler C.M., Wanke T., Petrovic M., Zwick R.H., Stieglitz S., Glöckl R., et al. Atemmuskeltraining: State-of-the-Art [Respiratory Muscle Training: State of the Art] Pneumologie. 2016;70:37–48. doi: 10.1055/s-0041-109312. PubMed DOI
Moodie L., Reeve J., Elkins M. Inspiratory muscle training in mechanically ventilated patients. J. Physiother. 2011;57:213–221. doi: 10.1016/S1836-9553(11)70051-0. PubMed DOI
Sclauser Pessoa I.M., Franco Parreira V., Fregonezi G.A., Sheel A.W., Chung F., Reid W.D. Reference values for maximal inspiratory pressure: A systematic review. Can. Respir. J. 2014;21:43–50. doi: 10.1155/2014/982374. PubMed DOI PMC
Bockenhauer S.E., Chen H., Julliard K.N., Weedon J. Measuring thoracic excursion: Reliability of the cloth tape measure technique. J. Am. Osteopath. Assoc. 2007;107:191–196. PubMed
Cahalin L.P. Pulmonary evaluation. In: DeTurkW E., Cahalin L.P., editors. Cardiovaskular and Pulmonary Physical Therapy. McGraw-Hill; New York, NY, USA: 2004.
Kaneko H., Horie J. Breathing movements of the chest and abdominal wall in healthy subjects. Respir. Care. 2012;57:1442–1451. doi: 10.4187/respcare.01655. PubMed DOI
Cala S.J., Kenyon C.M., Ferrigno G., Carnevali P., Aliverti A., Pedotti A., Macklem P.T., Rochester D.F. Chest wall and lung volume estimation by optical reflectance motion analysis. J. Appl. Physiol. 1996;81:2680–2689. doi: 10.1152/jappl.1996.81.6.2680. PubMed DOI
Aliverti A., Cala S.J., Duranti R., Ferrigno G., Kenyon C.M., Pedotti A., Scano G., Sliwinski P., Macklem P.T., Yan S. Human respiratory muscle actions and control during exercise. J. Appl. Physiol. 1997;83:1256–1269. doi: 10.1152/jappl.1997.83.4.1256. PubMed DOI
Ferrigno G., Carnevali P., Aliverti A., Molteni F., Beulcke G., Pedotti A. Three-dimensional optical analysis of chest wall motion. J. Appl. Physiol. 1994;77:1224–1231. doi: 10.1152/jappl.1994.77.3.1224. PubMed DOI
Hostettler S., Illi S.K., Mohler E., Aliverti A., Spengler C.M. Chest wall volume changes during inspiratory loaded breathing. Respir. Physiol. Neurobiol. 2011;175:130–139. doi: 10.1016/j.resp.2010.10.001. PubMed DOI
Romagnoli I., Gorini M., Gigliotti F., Bianchi R., Lanini B., Grazzini M., Stendardi L., Scano G. Chest wall kinematics, respiratory muscle action and dyspnoea during arm vs. leg exercise in humans. Acta Physiol. 2006;188:63–73. doi: 10.1111/j.1748-1716.2006.01607.x. PubMed DOI
Malátová R., Pučelík J., Rokytová J., Kolář P. The objectification of therapeutical methods used for improvement of the deep stabilizing spinal system. Neuroendocrinol. Lett. 2007;28:315–320. PubMed
Malátová R., Pučelík J., Rokytová J., Kolář P. Technical means for objectification of medical treatments in the area of the deep stabilisation spinal system. Neuroendocrinol. Lett. 2008;29:125–130. PubMed
Malátová R. Post Doctoral Thesis. Brno, Czech Republic: 2021. The Importance of Breathing Stereotype and Intervention Possibilities.
Bahenský P., Bunc V., Marko D., Malátová R. Dynamics of ventilation parameters at different load intensities and the options to influence it by a breathing exercise. J. Sports Med. Phys. Fit. 2020;60:1101–1109. doi: 10.23736/S0022-4707.20.10793-X. PubMed DOI
Bahenský P., Marko D., Grosicki G.J., Malátová R. Warm-up breathing exercises accelerate VO2 kinetics and reduce subjective strain during incremental cycling exercise in adolescents. J. Phys. Educ. Sport. 2020;20:3361–3367. doi: 10.7752/jpes.2020.06455. DOI
Gandevia S.C., Butler J.E., Hodges P.W., Taylor J.L. Balancing acts: Respiratory sensations, motor control and human posture. Clin. Exp. Pharmacol. Phys. 2002;29:118–121. doi: 10.1046/j.1440-1681.2002.03611.x. PubMed DOI
Cipriano G.F., Cipriano G., Jr., Santos F.V., Güntzel Chiappa A.M., Pires L., Cahalin L.P., Chiappa G.R. Current insights of inspiratory muscle training on the cardiovascular system: A systematic review with meta-analysis. Integr. Blood Press. Control. 2019;12:1–11. doi: 10.2147/IBPC.S159386. PubMed DOI PMC
Taylor B.J., How S.C., Romer L.M. Expiratory Muscle Fatigue Does Not Regulate Operating Lung Volumes during High-Intensity Exercise in Healthy Humans. J. Appl. Physiol. 2013;114:1569–1576. doi: 10.1152/japplphysiol.00066.2013. PubMed DOI
de Abreu R.M., Rehder-Santos P., Minatel V., Dos Santos G.L., Catai A.M. Effects of inspiratory muscle training on cardiovascular autonomic control: A systematic review. Auton. Neurosci. 2017;208:29–35. doi: 10.1016/j.autneu.2017.09.002. PubMed DOI
Billman G.E. The LF/HF ratio does not accurately measure cardiac sympathovagal balance. Front. Physiol. 2013;4:26. doi: 10.3389/fphys.2013.00026. PubMed DOI PMC
Hodges P.W., Gandevia S.C. Activation of the human diaphragm during a repetitive postural task. J. Physiol. 2000;522:165–175. doi: 10.1111/j.1469-7793.2000.t01-1-00165.xm. PubMed DOI PMC
Bahenský P., Malátová R., Bunc V. Changed dynamic ventilation parameters as a result of a breathing exercise intervention programme. J. Sports Med. Phys. Fit. 2019;59:1369–1375. doi: 10.23736/S0022-4707.19.09483-0. PubMed DOI
Kenney W.L., Wilmore J.H., Costill D.L. Physiology of Sport and Exercise. Human Kinetics; Champaign, IL, USA: 2015.
Hamdouni H., Kliszczewicz B., Zouhal H., Rhibi F., Ben Salah F.Z., Ben Abderrahmann A. Effect of three fitness programs on strength, speed, flexibility and muscle power on sedentary subjects. J. Sports Med. Phys. Fit. 2021 doi: 10.23736/S0022-4707.21.12086-9. PubMed DOI
Karthik P.S., Chandrasekhar M., Ambareesha K., Nikhil C. Effect of pranayama and suryanamaskar on pulmonary functions in medical students. J. Clin. Diagn. Res. 2014;8:4–6. doi: 10.7860/JCDR/2014/10281.5344. PubMed DOI PMC
Langer D., Ciavaglia C., Faisal A., Webb K.A., Neder J.A., Gosselink R., Dacha S., Topalovic M., Ivanova A., O’Donnel D.E., et al. Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD. J. Appl. Physiol. 2018;125:381–392. doi: 10.1152/japplphysiol.01078.2017. PubMed DOI
Radhakrishnan K., Sharma V.K., Subramanian S.K. Does treadmill running performance, heart rate and breathing rate response during maximal graded exercise improve after volitional respiratory muscle training? Br. J. Sports Med. 2017 doi: 10.1136/bjsports-2017-097827.3. PubMed DOI
Does Wim Hof Method Improve Breathing Economy during Exercise?