• This record comes from PubMed

Impact of a Breathing Intervention on Engagement of Abdominal, Thoracic, and Subclavian Musculature during Exercise, a Randomized Trial

. 2021 Aug 10 ; 10 (16) : . [epub] 20210810

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
No. 021/2019/S Grant Agency of University of South Bohemia within the framework of Team grant project

BACKGROUND: Breathing technique may influence endurance exercise performance by reducing overall breathing work and delaying respiratory muscle fatigue. We investigated whether a two-month yoga-based breathing intervention could affect breathing characteristics during exercise. METHODS: Forty-six endurance runners (age = 16.6 ± 1.2 years) were randomized to either a breathing intervention or control group. The contribution of abdominal, thoracic, and subclavian musculature to respiration and ventilation parameters during three different intensities on a cycle ergometer was assessed pre- and post-intervention. RESULTS: Post-intervention, abdominal, thoracic, and subclavian ventilatory contributions were altered at 2 W·kg-1 (27:23:50 to 31:28:41), 3 W·kg-1 (26:22:52 to 28:31:41), and 4 W·kg-1 (24:24:52 to 27:30:43), whereas minimal changes were observed in the control group. More specifically, a significant (p < 0.05) increase in abdominal contribution was observed at rest and during low intensity work (i.e., 2 and 3 W·kg-1), and a decrease in respiratory rate and increase of tidal volume were observed in the experimental group. CONCLUSIONS: These data highlight an increased reliance on more efficient abdominal and thoracic musculature, and less recruitment of subclavian musculature, in young endurance athletes during exercise following a two-month yoga-based breathing intervention. More efficient ventilatory muscular recruitment may benefit endurance performance by reducing energy demand and thus optimize energy requirements for mechanical work.

See more in PubMed

Bravo-Sánchez A., Morán-García J., Abián P., Abián-Vicén J. Association of the Use of the Mobile Phone with Physical Fitness and Academic Performance: A Cross-Sectional Study. Int. J. Environ. Res. Public Health. 2021;18:1042. doi: 10.3390/ijerph18031042. PubMed DOI PMC

Eitivipart A.C., Viriyarojanakul S., Redhead L. Musculoskeletal disorder and pain associated with smartphone use: A systematic review of biomechanical evidence. Hong Kong Physiother. J. 2018;38:77–90. doi: 10.1142/S1013702518300010. PubMed DOI PMC

Depiazzi J., Everard M.L. Dysfunctional breathing and reaching one’s physiological limit as causes of exercise-induced dyspnoea. Breathe. 2016;12:120–129. doi: 10.1183/20734735.007216. PubMed DOI PMC

Chaitow L., Bradley D., Gilbert C. Multidisciplinary Approaches to Breathing Pattern Disorders. Churchill Livingston; London, UK: 2002.

Kaminoff L. What yoga therapists should know about the anatomy of breathing. Int. J. Yoga Therap. 2006;16:67–77. doi: 10.17761/ijyt.16.1.64603tq46513j242. DOI

Pryor J.A., Prasad S.A. Physiotherapy for Respiratory and Cardiac Problems. Churchill Livingstone; Edinburgh, UK: 2002.

Yuan G., Drost N.A., McIvor R.A. Respiratory Rate and Breathing Pattern. McMaster Univ. Med J. 2013;10:23–25.

Aaron E.A., Johnson B.D., Seow C.K., Dempsey J.A. Oxygen cost of exercise hyperpnea: Measurement. J. Appl. Physiol. 1992;72:1810–1817. doi: 10.1152/jappl.1992.72.5.1810. PubMed DOI

Guenette J.A., Sheel A.W. Physiological consequences of a high work of breathing during heavy exercise in humans. J. Sci. Med. Sport. 2007;10:341–350. doi: 10.1016/j.jsams.2007.02.003. PubMed DOI

McArdle W.D., Katch F.I., Katch V.L. Essentials of Exercise Physiology. Lippincott Williams and Wilkins; Baltimore, MD, USA: 2016.

Malátová R., Bahenský P., Mareš M., Rost M. Breathing pattern of restful and deep breathing. In: Zvonař M., Sajdlová Z., editors. Proceedings of the 11th International Conference on Kinanthropology, Brno, Czech Republic, 29 Novermber–1 December 2017. Masarykova Univerzita; Brno, Czech Republic: 2017.

Benchetrit G. Breathing pattern in humans: Diversity and individuality. Respir. Physiol. 2000;122:123–129. doi: 10.1016/S0034-5687(00)00154-7. PubMed DOI

Clifton-Smith T. Recognizing and Treating Breathing Disorders E-Book: A Multidisciplinary Approach. Churchill Livingstone; London, UK: 2014. Breathing pattern disorders and the athlete. DOI

Chaitow L., Bradley D., Gilbert C. Recognizing and Treating Breathing Disorders. A Multidisciplinary Approach. 2nd ed. Churchill Livingston; London, UK: 2014.

Hodges P.W., Heijnen I., Gandevia S.C. Postural activity of the diaphragm is reduced in humans when respiratory demand increases. J. Physiol. 2001;537:999–1008. doi: 10.1113/jphysiol.2001.012648. PubMed DOI PMC

Weavil J.C., Amann M. Neuromuscular fatigue during whole body exercise. Curr. Opin. Physiol. 2019;10:128–136. doi: 10.1016/j.cophys.2019.05.008. PubMed DOI PMC

Hruzevych I., Boguslavska V., Kropta R., Galan Y., Nakonechnyi I., Pityn M. The effectiveness of the endogenous-hypoxic breathing in the physical training of skilled swimmers. J. Phys. Educ. Sport. 2017;17:1009–1016. doi: 10.7752/jpes.2017.s3155. DOI

Kisner C., Colby L.A. Therapeutic Exercise: Foundations and Techniques. 5th ed. FA Davis Company; Philadelphia, PA, USA: 2007. Management of pulmonary conditions; pp. 851–882.

Szczepan S., Danek N., Michalik K., Wróblewska Z., Zatoń K. Influence of a Six-Week Swimming Training with Added Respiratory Dead Space on Respiratory Muscle Strength and Pulmonary Function in Recreational Swimmers. Int. J. Environ. Res. Public Health. 2020;17:5743. doi: 10.3390/ijerph17165743. PubMed DOI PMC

Verges S., Lenherr O., Haner A.C., Schulz C., Spengler C.M. Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;292:R1246–R1253. doi: 10.1152/ajpregu.00409.2006. PubMed DOI

Aliverti A. The respiratory muscles during exercise. Breathe. 2016;12:165–168. doi: 10.1183/20734735.008116. PubMed DOI PMC

Faghy M.A., Brown P.I. Functional training of the inspiratory muscles improves load carriage performance. Ergonomics. 2019;62:1439–1449. doi: 10.1080/00140139.2019.1652352. PubMed DOI

Hinde K.L., Low C., Lloyd R., Cooke C.B. Inspiratory muscle training at sea level improves the strength of inspiratory muscles during load carriage in cold-hypoxia. Ergonomics. 2020;63:1584–1598. doi: 10.1080/00140139.2020.1807613. PubMed DOI

Göhl O., Walker D.J., Walterspacher S., Langer D., Spengler C.M., Wanke T., Petrovic M., Zwick R.H., Stieglitz S., Glöckl R., et al. Atemmuskeltraining: State-of-the-Art [Respiratory Muscle Training: State of the Art] Pneumologie. 2016;70:37–48. doi: 10.1055/s-0041-109312. PubMed DOI

Moodie L., Reeve J., Elkins M. Inspiratory muscle training in mechanically ventilated patients. J. Physiother. 2011;57:213–221. doi: 10.1016/S1836-9553(11)70051-0. PubMed DOI

Sclauser Pessoa I.M., Franco Parreira V., Fregonezi G.A., Sheel A.W., Chung F., Reid W.D. Reference values for maximal inspiratory pressure: A systematic review. Can. Respir. J. 2014;21:43–50. doi: 10.1155/2014/982374. PubMed DOI PMC

Bockenhauer S.E., Chen H., Julliard K.N., Weedon J. Measuring thoracic excursion: Reliability of the cloth tape measure technique. J. Am. Osteopath. Assoc. 2007;107:191–196. PubMed

Cahalin L.P. Pulmonary evaluation. In: DeTurkW E., Cahalin L.P., editors. Cardiovaskular and Pulmonary Physical Therapy. McGraw-Hill; New York, NY, USA: 2004.

Kaneko H., Horie J. Breathing movements of the chest and abdominal wall in healthy subjects. Respir. Care. 2012;57:1442–1451. doi: 10.4187/respcare.01655. PubMed DOI

Cala S.J., Kenyon C.M., Ferrigno G., Carnevali P., Aliverti A., Pedotti A., Macklem P.T., Rochester D.F. Chest wall and lung volume estimation by optical reflectance motion analysis. J. Appl. Physiol. 1996;81:2680–2689. doi: 10.1152/jappl.1996.81.6.2680. PubMed DOI

Aliverti A., Cala S.J., Duranti R., Ferrigno G., Kenyon C.M., Pedotti A., Scano G., Sliwinski P., Macklem P.T., Yan S. Human respiratory muscle actions and control during exercise. J. Appl. Physiol. 1997;83:1256–1269. doi: 10.1152/jappl.1997.83.4.1256. PubMed DOI

Ferrigno G., Carnevali P., Aliverti A., Molteni F., Beulcke G., Pedotti A. Three-dimensional optical analysis of chest wall motion. J. Appl. Physiol. 1994;77:1224–1231. doi: 10.1152/jappl.1994.77.3.1224. PubMed DOI

Hostettler S., Illi S.K., Mohler E., Aliverti A., Spengler C.M. Chest wall volume changes during inspiratory loaded breathing. Respir. Physiol. Neurobiol. 2011;175:130–139. doi: 10.1016/j.resp.2010.10.001. PubMed DOI

Romagnoli I., Gorini M., Gigliotti F., Bianchi R., Lanini B., Grazzini M., Stendardi L., Scano G. Chest wall kinematics, respiratory muscle action and dyspnoea during arm vs. leg exercise in humans. Acta Physiol. 2006;188:63–73. doi: 10.1111/j.1748-1716.2006.01607.x. PubMed DOI

Malátová R., Pučelík J., Rokytová J., Kolář P. The objectification of therapeutical methods used for improvement of the deep stabilizing spinal system. Neuroendocrinol. Lett. 2007;28:315–320. PubMed

Malátová R., Pučelík J., Rokytová J., Kolář P. Technical means for objectification of medical treatments in the area of the deep stabilisation spinal system. Neuroendocrinol. Lett. 2008;29:125–130. PubMed

Malátová R. Post Doctoral Thesis. Brno, Czech Republic: 2021. The Importance of Breathing Stereotype and Intervention Possibilities.

Bahenský P., Bunc V., Marko D., Malátová R. Dynamics of ventilation parameters at different load intensities and the options to influence it by a breathing exercise. J. Sports Med. Phys. Fit. 2020;60:1101–1109. doi: 10.23736/S0022-4707.20.10793-X. PubMed DOI

Bahenský P., Marko D., Grosicki G.J., Malátová R. Warm-up breathing exercises accelerate VO2 kinetics and reduce subjective strain during incremental cycling exercise in adolescents. J. Phys. Educ. Sport. 2020;20:3361–3367. doi: 10.7752/jpes.2020.06455. DOI

Gandevia S.C., Butler J.E., Hodges P.W., Taylor J.L. Balancing acts: Respiratory sensations, motor control and human posture. Clin. Exp. Pharmacol. Phys. 2002;29:118–121. doi: 10.1046/j.1440-1681.2002.03611.x. PubMed DOI

Cipriano G.F., Cipriano G., Jr., Santos F.V., Güntzel Chiappa A.M., Pires L., Cahalin L.P., Chiappa G.R. Current insights of inspiratory muscle training on the cardiovascular system: A systematic review with meta-analysis. Integr. Blood Press. Control. 2019;12:1–11. doi: 10.2147/IBPC.S159386. PubMed DOI PMC

Taylor B.J., How S.C., Romer L.M. Expiratory Muscle Fatigue Does Not Regulate Operating Lung Volumes during High-Intensity Exercise in Healthy Humans. J. Appl. Physiol. 2013;114:1569–1576. doi: 10.1152/japplphysiol.00066.2013. PubMed DOI

de Abreu R.M., Rehder-Santos P., Minatel V., Dos Santos G.L., Catai A.M. Effects of inspiratory muscle training on cardiovascular autonomic control: A systematic review. Auton. Neurosci. 2017;208:29–35. doi: 10.1016/j.autneu.2017.09.002. PubMed DOI

Billman G.E. The LF/HF ratio does not accurately measure cardiac sympathovagal balance. Front. Physiol. 2013;4:26. doi: 10.3389/fphys.2013.00026. PubMed DOI PMC

Hodges P.W., Gandevia S.C. Activation of the human diaphragm during a repetitive postural task. J. Physiol. 2000;522:165–175. doi: 10.1111/j.1469-7793.2000.t01-1-00165.xm. PubMed DOI PMC

Bahenský P., Malátová R., Bunc V. Changed dynamic ventilation parameters as a result of a breathing exercise intervention programme. J. Sports Med. Phys. Fit. 2019;59:1369–1375. doi: 10.23736/S0022-4707.19.09483-0. PubMed DOI

Kenney W.L., Wilmore J.H., Costill D.L. Physiology of Sport and Exercise. Human Kinetics; Champaign, IL, USA: 2015.

Hamdouni H., Kliszczewicz B., Zouhal H., Rhibi F., Ben Salah F.Z., Ben Abderrahmann A. Effect of three fitness programs on strength, speed, flexibility and muscle power on sedentary subjects. J. Sports Med. Phys. Fit. 2021 doi: 10.23736/S0022-4707.21.12086-9. PubMed DOI

Karthik P.S., Chandrasekhar M., Ambareesha K., Nikhil C. Effect of pranayama and suryanamaskar on pulmonary functions in medical students. J. Clin. Diagn. Res. 2014;8:4–6. doi: 10.7860/JCDR/2014/10281.5344. PubMed DOI PMC

Langer D., Ciavaglia C., Faisal A., Webb K.A., Neder J.A., Gosselink R., Dacha S., Topalovic M., Ivanova A., O’Donnel D.E., et al. Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD. J. Appl. Physiol. 2018;125:381–392. doi: 10.1152/japplphysiol.01078.2017. PubMed DOI

Radhakrishnan K., Sharma V.K., Subramanian S.K. Does treadmill running performance, heart rate and breathing rate response during maximal graded exercise improve after volitional respiratory muscle training? Br. J. Sports Med. 2017 doi: 10.1136/bjsports-2017-097827.3. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...