The Effect of Static Apnea Diving Training on the Physiological Parameters of People with a Sports Orientation and Sedentary Participants: A Pilot Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38921834
PubMed Central
PMC11209488
DOI
10.3390/sports12060140
PII: sports12060140
Knihovny.cz E-zdroje
- Klíčová slova
- breath holding, breathing, forced vital capacity, heart rate, oxygen saturation, runners, sedentary participants, swimmers,
- Publikační typ
- časopisecké články MeSH
Diver training improves physical and mental fitness, which can also benefit other sports. This study investigates the effect of eight weeks of static apnea training on maximum apnea time, and on the physiological parameters of runners, swimmers, and sedentary participants, such as forced vital capacity (FVC), minimum heart rate (HR), and oxygen saturation (SpO2). The study followed 19 participants, including five runners, swimmers, sedentary participants, and four competitive divers for reference values. The minimum value of SpO2, HR, maximum duration of apnea, and FVC were measured. Apnea training occurred four times weekly, consisting of six apneas with 60 s breathing pauses. Apnea duration was gradually increased by 30 s. The measurement started with a 30 s apnea and ended with maximal apnea. There was a change in SpO2 decreased by 6.8%, maximum apnea length increased by 15.8%, HR decreased by 9.1%, and FVC increased by 12.4% for the groups (p < 0.05). There were intra-groups changes, but no significant inter-groups difference was observed. Eight weeks of apnea training improved the maximum duration of apnea, FVC values and reduced the minimum values of SpO2 and HR in all groups. No differences were noted between groups after training. This training may benefit cardiorespiratory parameters in the population.
Zobrazit více v PubMed
Kenney W.L., Wilmore J., Costil D. Physiology of Sport and Exercise. Human kinetics; Champaign, IL, USA: 2015.
Bahenský P., Bunc V., Marko D., Malátová R. Dynamics of ventilation parameters at different load intensities and the option to influence it by a breathing exercise. Sports Med. Phys. Fit. 2020;60:1101–1109. doi: 10.23736/S0022-4707.20.10793-X. PubMed DOI
Faghy M.A., Brown P.I. Functional training of the inspiratory muscles improves load carriage performance. Ergonomics. 2019;62:1439–1449. doi: 10.1080/00140139.2019.1652352. PubMed DOI
Hinde K.L., Low C., Lloyd R., Cooke C.B. Inspiratory muscle training at sea level improves the strength of inspiratory muscles during load carriage in cold-hypoxia. Ergonomics. 2020;63:1584–1598. doi: 10.1080/00140139.2020.1807613. PubMed DOI
Bahenský P., Bunc V., Malátová R., Marko D., Grosicki G.J., Schuster J. Impact of a breathing intervention on engagement of abdominal, thoracic, and subclavian musculature during exercise, a randomized trial. J. Clin. Med. 2021;10:3514. doi: 10.3390/jcm10163514. PubMed DOI PMC
Harbour E., Stöggl T., Schwameder H., Finkenzeller T. Breath tools: A synthesis of evidence-based breathing strategies to enhance human running. Front. Physiol. 2022;13:813243. doi: 10.3389/fphys.2022.813243. PubMed DOI PMC
Gandevia S.C., Butler J.E., Hodges P.W., Taylor J.L. Balancing acts: Respiratory sensations, motor control and human posture. Clin. Exp. Pharmacol. Phys. 2002;29:118–121. doi: 10.1046/j.1440-1681.2002.03611.x. PubMed DOI
Jerath R., Crawford M.W., Barnes V.A., Harden K. Self-regulation of breathing as a primary treatment of anxiety. Appl. Psychophysiol. Biofeedback. 2015;40:107–115. doi: 10.1007/s10484-015-9279-8. PubMed DOI
Woorons X., Bourdillon N., Vandewalle H., Lamberto C., Mollard P., Richalet J.P., Pichon A. Exercise with hypoventilation induces lower muscle oxygenation and higher blood lactate concentration: Role of hypoxia and hypercapnia. Eur. J. Appl. Physiol. 2020;110:367–377. doi: 10.1007/s00421-010-1512-9. PubMed DOI
Basualto-Alarcón C., Rodas G., Galilea P.A., Riera J., Pagés T., Ricart A., Torella R.J., Behn K., Viscor G. Cardiorespiratory parameters during submaximal exercise under acute exposure to normobaric and hypobaric hypoxia. Apunts. Med. L’esport. 2012;47:65–72. doi: 10.1016/j.apunts.2011.11.005. DOI
Weavil J.C., Amann M. Neuromuscular fatigue during whole body exercise. Curr. Opin. Physiol. 2019;10:128–136. doi: 10.1016/j.cophys.2019.05.008. PubMed DOI PMC
Holfelder B., Becker F. Hypoventilation training: A systematic review. Sports Exerc. Med. Switz. 2019;66:10. doi: 10.34045/SSEM/2018/23. DOI
Muth C.M., Radermacher P., Pittner A., Steinacker J., Schabana R., Hamich S., Paulat K., Calzia E. Arterial blood gases during diving in elite apnea divers. Int. J. Sports Med. 2003;24:104–107. doi: 10.1055/s-2003-38401. PubMed DOI
Lindholm P., Nordh J., Gennser M. The heart rate of breath-hold divers during static apnea: Effects of competitive stress. Undersea Hyperb. Med. 2006;33:119. PubMed
Walterspacher S., Scholz T., Tetzlaff K., Sorichter S. Breath-hold diving: Respiratory function on the longer term. Med. Sci. Sports Exerc. 2011;43:1214–1219. doi: 10.1249/MSS.0b013e31820a4e0c. PubMed DOI
Aidainternational. [(accessed on 28 March 2024)]. Available online: https://www.aidainternational.orq/
Bain A.R., Drvis I., Dujic Z., MacLeod D.B., Ainslie P.N. Physiology of static breath holding in elite apneists. Exp. Physiol. 2018;103:635–651. doi: 10.1113/EP086269. PubMed DOI
Massini D.A., Scaggion D., De Oliviera T.P., Macedo A.G., Almeida T.F., Pessôa Filho D.M. Training methods for maximal static apnea performance: A systematic review and meta-analysis. J. Sports Med. Phys. Fit. 2022;63:77–85. doi: 10.23736/S0022-4707.22.13621-2. PubMed DOI
Eichhorn L., Erdfelder F., Kessler F., Dolscheid-Pommerich R.C., Zur B., Hoffmann U., Ellerkmann R., Meyer R. Influence of Apnea-induced Hypoxia on Catecholamine Release and Cardiovascular Dynamics. Int. J. Sports Med. 2017;38:85–91. doi: 10.1055/s-0042-107351. PubMed DOI
Moir M.E., Klassen S.A., Al-Khazraji B.K., Woehrle E., Smith S.O., Matushewski B.J., Kozic D., Dujic Ž., Barak O.F., Shoemaker K. Impaired dynamic cerebral autoregulation in trained breath-hold divers. J. Appl. Physiol. 2019;126:1694–1700. doi: 10.1152/japplphysiol.00210.2019. PubMed DOI PMC
Lemaître F., Joulia F., Chollet D. Apnea: A new training method in sport? Med. Hypotheses. 2010;74:413–415. doi: 10.1016/j.mehy.2009.09.051. PubMed DOI
Guimard A., Joulia F., Prieur F., Poszalczyk G., Helme K., Lhuissier F.J. Exponential Relationship Between Maximal Apnea Duration and Exercise Intensity in Non-apnea Trained Individuals. Front. Physiol. 2022;12:815–824. doi: 10.3389/fphys.2021.815824. PubMed DOI PMC
Kooyman G.L., Castellini M.A., Davis R.W. Physiology of diving in marine mammals. Annu. Rev. Physiol. 1981;43:343–356. doi: 10.1146/annurev.ph.43.030181.002015. PubMed DOI
Engan H., Richardson M.X., Lodin-Sundström A., Van Beekvelt M., Schagatay E. Effects of two weeks of daily apnea training on diving response, spleen contraction, and erythropoiesis in novel subjects. Scand. J. Med. Sci. Sports. 2013;23:340–348. doi: 10.1111/j.1600-0838.2011.01391.x. PubMed DOI
Sterba J.A., Lundgren C.E. Breath-hold duration in man and the diving response induced by face immersion. Undersea Biomed. Res. 1998;15:361–375. PubMed
Gooden B.A. Mechanism of the human diving response. Integr. Physiol. Behav. Sci. 1994;29:6–16. doi: 10.1007/BF02691277. PubMed DOI
Foster G.E., Sheel A.W. The human diving response, its function, and its control. Scand. J. Med. Sci. Sports. 2005;15:3–12. doi: 10.1111/j.1600-0838.2005.00440.x. PubMed DOI
Lindholm P., Lundgren C.E. The physiology and pathophysiology of human breath-hold diving. J. Appl. Physiol. 2009;106:284–292. doi: 10.1152/japplphysiol.90991.2008. PubMed DOI
Andersson J., Schagatay E. Arterial oxygen desaturation during apnea in humans. Undersea Hyperb. Med. 1998;25:21–25. PubMed
Andersson J.P., Linér M.H., Runow E., Schagatay E.K. Diving response and arterial oxygen saturation during apnea and exercise in breath-hold divers. J. Appl. Physiol. 2002;93:882–886. doi: 10.1152/japplphysiol.00863.2001. PubMed DOI
Lindholm P., Sundblad P., Linnarsson D. Oxygen-conserving effects of apnea in exercising men. J. Appl. Physiol. 1999;87:2122–2127. doi: 10.1152/jappl.1999.87.6.2122. PubMed DOI
Käsinger H. Šnorchlování. Kopp; České Budějovice, Czech Republic: 2004.
Schagatay E., Haughey H., Reimers J. Speed of spleen volume changes evoked by serial apneas. Eur. J. Appl. Physiol. 2005;93:447–452. doi: 10.1007/s00421-004-1224-0. PubMed DOI
Lemaître F., Seifert L., Polin D., Juge J., Tourny-Chollet C., Chollet D. Apnea training effects on swimming coordination. J. Strength Cond. Res. 2009;23:1909–1914. doi: 10.1519/JSC.0b013e3181b073a8. PubMed DOI
Espersen K., Frandsen H., Lorentzen T., Kanstrup I.L., Christensen N.J. The human spleen as an erythrocyte reservoir in diving-related interventions. J. Appl. Physiol. 2002;92:2071–2079. doi: 10.1152/japplphysiol.00055.2001. PubMed DOI
Richardson M., Bruijn R.D., Holmberg H.C., Björklund G., Haughey H., Schagatay E. Increase of hemoglobin concentration after maximal apneas in divers, skiers, and untrained humans. Can. J. Appl. Physiol. 2005;30:276–281. doi: 10.1139/h05-120. PubMed DOI
Arnold R.W. Extremes in human breath hold, facial immersion bradycardia. Undersea Biomed. Res. 1985;12:183–190. PubMed
Ferrigno M., Ferretti G., Ellis A., Warkander D.A.N., Costa M., Cerretelli P., Lundgren C.E. Cardiovascular changes during deep breath-hold dives in a pressure chamber. J. Appl. Physiol. 1997;83:1282–1290. doi: 10.1152/jappl.1997.83.4.1282. PubMed DOI
Hansel J., Solleder I., Gfroerer W., Muth C.M., Paulat K., Simon P., Heitkamp H.C., Niess A., Tetzlaff K. Hypoxia and cardiac arrhythmias in breath-hold divers during voluntary immersed breath-holds. Eur. J. Appl. Physiol. 2009;105:673–678. doi: 10.1007/s00421-008-0945-x. PubMed DOI
Israel S. Neue Gesichtspunkte zum atemanhalteversuch in Klinik und sporta Èrztlichter praxis. Zshr Inn. Med. 1957;12:1048–1052. PubMed
Israel S. Der erweiterte atemanhalteversuch als funktionspruÈfung fuÈr das atmungs- herz-kreislauf-system. Theor. Prax. Korperkultur. 1958;7:650–654.
Heath J.R., Irwin C.J. An increase in breath-hold time appearing after breath-holding. Respir. Physiol. 1968;4:73–77. doi: 10.1016/0034-5687(68)90008-X. PubMed DOI
Hentsch U., Ulmer H.V. Trainability of underwater breath-holding time. Int. J. Sports Med. 1984;5:343–347. doi: 10.1055/s-2008-1025930. PubMed DOI
Vasar E., Kingisepp P.H. Respiration. Pergamon; Oxford, UK: 1984. Physiological characteristics of repeated breath holding; pp. 639–646.
Schagatay E., Van Kampen M., Andersson J. Effects of repeated apneas on apneic time and diving response in non-divers. Undersea Hyperb. Med. 1999;26:143. PubMed
Apnea O2 & CO2 Static Tables for Breathing Exercises—For Freediving and Other Sports. [(accessed on 10 May 2024)]. Available online: https://visitsithonia.com/lifestyle/sport/diving/freediving-static-tables/
Mrkvicka T., Myllymaki M., Jilek M., Hahn U. A one-way ANOVA test for functional data with graphical interpretation. arXiv. 2016 doi: 10.14736/kyb-2020-3-0432.1612.03608 DOI
Elia A., Wilson O.J., Lees M., Parker P.J., Barlow M.J., Cocks M., O’Hara J.P. Skeletal muscle, haematological and splenic volume characteristics of elite breath-hold divers. Eur. J. Appl. Physiol. 2019;119:2499–2511. doi: 10.1007/s00421-019-04230-6. PubMed DOI PMC
Pernett F., Bergenhed P., Holmström P., Mulder E., Schagatay E. Effects of hyperventilation on oxygenation, apnea breaking points, diving response, and spleen contraction during serial static apneas. Eur. J. Appl. Physiol. 2023;123:1809–1824. doi: 10.1007/s00421-023-05202-7. PubMed DOI PMC
Joulia F., Coulange M., Lemaitre F., Desplantes A., Costalat G., Bruzzese L., Franceschi F., Barberon B., Kipson N., Jammes Y., et al. Ischaemia-modified albumin during experimental apnoea. Can. J. Physiol. Pharmacol. 2015;93:421–426. doi: 10.1139/cjpp-2014-0538. PubMed DOI
Guimard A., Prieur F., Zorgati H., Morin D., Lasne F., Collomp K. Acute apnea swimming: Metabolic responses and performance. J. Strength Cond. Res. 2014;28:958–963. doi: 10.1519/JSC.0000000000000254. PubMed DOI
Kjeld T., Isbrand A.B., Linnet K., Zerahn B., Højberg J., Hansen E.G., Gormsen L.S., Bejder J., Krag T., Vissing J., et al. Extreme hypoxia causing brady-arrythmias during apnea in elite breath-hold divers. Front. Physiol. 2021;12:712573. doi: 10.3389/fphys.2021.712573. PubMed DOI PMC
Schagatay E., Richardson M.X., Lodin-Sundström A. Size matters: Spleen and lung volumes predict performance in human apneic divers. Front. Physiol. 2012;3:173. doi: 10.3389/fphys.2012.00173. PubMed DOI PMC
Leuenberger U.A., Hardy J.C., Herr M.D., Gray K.S., Sinoway L.I. Hypoxia augments apnea-induced peripheral vasoconstriction in humans. J. Appl. Physiol. 2001;90:1516–1522. doi: 10.1152/jappl.2001.90.4.1516. PubMed DOI
Lemaître F., Buchheit M., Joulia F., Fontanari P., Tourny-Chollet C. Static apnea effect on heart rate and its variability in elite breath-hold divers. Aviat. Space Environ. Med. 2008;79:99–104. doi: 10.3357/ASEM.2142.2008. PubMed DOI
Kiviniemi A.M., Breskovic T., Uglesic L., Kuch B., Maslov P.Z., Sieber A., Sepannen T., Tulppo M.P., Dujic Z. Heart rate variability during static and dynamic breath-hold dives in elite divers. Auton. Neurosci. 2012;169:95–101. doi: 10.1016/j.autneu.2012.05.004. PubMed DOI
Son H., Jeon Y., Kim H. Effects of static apnea training on pulmonary function, blood lactate response and exercise performance of elite swimmers. Exerc. Sci. 2020;29:272–280. doi: 10.15857/ksep.2020.29.3.272. DOI
Howell J.B.L., Altounyan R.E., Lai Y.L. Effect of carbon dioxide on the response of the human airway to inhaled histamine and methacholine. J. Appl. Physiol. 1965;20:646–651.
Delahoche J., Delapille P., Lemaître F., Verin E., Tourny-Chollet C. Arterial oxygen saturation and heart rate variation during breath-holding: Comparison between breath-hold divers and controls. Int. J. Sports Med. 2004;26:177–181. doi: 10.1055/s-2004-820976. PubMed DOI