• This record comes from PubMed

Facet-Control versus Co-Catalyst-Control in Photocatalytic H2 Evolution from Anatase TiO2 Nanocrystals

. 2022 Mar ; 11 (3) : e202200010. [epub] 20220203

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
DFG
Erlangen DFG cluster of excellence, Engineering of Advanced Materials (EAM)
442826449 DFG CEP Register
SCHM 1597/38-1 DFG CEP Register
FA 336/13-1 DFG CEP Register

Titanium dioxide (TiO2 ) and, in particular, its anatase polymorph, is widely studied for photocatalytic H2 production. In the present work, we examine the importance of reactive facets of anatase crystallites on the photocatalytic H2 evolution from aqueous methanol solutions. For this, we synthesized anatase TiO2 nanocrystals with a large amount of either {001} facets, that is, nanosheets, or {101} facets, that is, octahedral nanocubes, and examined their photocatalytic H2 evolution and then repeated this procedure with samples where Pt co-catalyst is present on all facets. Octahedral nanocubes with abundant {101} facets produce >4 times more H2 than nanosheets enriched in {001} facets if the reaction is carried out under co-catalyst-free conditions. For samples that carry Pt co-catalyst on both {001} and {101} facets, faceting loses entirely its significance. This demonstrates that the beneficial role of faceting, namely the introduction of {101} facets that act as electron transfer mediator is relevant only for co-catalyst-free TiO2 surfaces.

See more in PubMed

Rahman M. Z., Kibria M. G., Mullins C. B., Chem. Soc. Rev. 2020, 49, 1887; PubMed

Hong L.-F., Guo R.-T., Yuan Y., Ji X.-Y., Lin Z.-D., Li Z.-S., Pan W.-G., ChemSusChem 2021, 14, 539; PubMed

Chen X., Shen S., Guo L., Mao S. S., Chem. Rev. 2010, 110, 6503. PubMed

Fujishima A., Honda K., Nature 1972, 238, 37. PubMed

Wang H., Zhang L., Chen Z., Hu J., Li S., Wang Z., Liu J., Wang X., Chem. Soc. Rev. 2014, 43, 5234; PubMed

Zou Z., Ye J., Sayama K., Arakawa H., Nature 2001, 414, 625. PubMed

Melchionna M., Fornasiero P., ACS Catal. 2020, 10, 5493. PubMed PMC

Hainer A. S., Hodgins J. S., Sandre V., Vallieres M., Lanterna A. E., Scaiano J. C., ACS Energy Lett. 2018, 3, 542;

Lee K., Mazare A., Schmuki P., Chem. Rev. 2014, 114, 9385. PubMed

Kumaravel V., Mathew S., Bartlett J., Pillai S. C., Appl. Catal. B 2019, 244, 1021;

Wang Q., Domen K., Chem. Rev. 2020, 120, 919. PubMed

Nam Y., Lim J. H., Ko K. C., Lee J. Y., J. Mater. Chem. A 2019, 7, 13833;

Katal R., Masudy-Panah S., Tanhaei M., Farahani M. H. D. A., Jiangyong H., Chem. Eng. J. 2020, 384, 123384.

Diebold U., Surf. Sci. Rep. 2003, 48, 53.

Liu L., Gu X., Ji Z., Zou W., Tang C., Gao F., Dong L., J. Phys. Chem. C 2013, 117, 18578.

Tachikawa T., Majima T., Chem. Commun. 2012, 48, 3300; PubMed

Tachikawa T., Yamashita S., Majima T., J. Am. Chem. Soc. 2011, 133, 7197. PubMed

Liu G., Yang H. G., Pan J., Yang Y. Q., Lu G. Q., Cheng H.-M., Chem. Rev. 2014, 114, 9559. PubMed

Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M., Lu G. Q., Nature 2008, 453, 638. PubMed

Joo J., Chow B. Y., Prakash M., Boyden E. S., Jacobson J. M., Nat. Mater. 2011, 10, 596; PubMed PMC

Lahav M., Leiserowitz L., Chem. Eng. Sci. 2001, 56, 2245;

Barnard A. S., Curtiss L. A., Nano Lett. 2005, 5, 1261. PubMed

Zheng Z., Huang B., Lu J., Qin X., Zhang X., Dai Y., Chem. Eur. J. 2011, 17, 15032; PubMed

Yu J., Low J., Xiao W., Zhou P., Jaroniec M., J. Am. Chem. Soc. 2014, 136, 8839; PubMed

Kashiwaya S., Toupance T., Klein A., Jaegermann W., Adv. Energy Mater. 2018, 8, 1802195.

Kobayashi K., Takashima M., Takase M., Ohtani B., Catalysts 2018, 8, 542;

Liu C., Han X., Xie S., Kuang Q., Wang X., Jin M., Xie Z., Zheng L., Chem. Asian J. 2013, 8, 282. PubMed

Ye L., Mao J., Liu J., Jiang Z., Peng T., Zan L., J. Mater. Chem. A 2013, 1, 10532.

Zhang D., Li G., Yang X., Yu J. C., Chem. Commun. 2009, 29, 4381. PubMed

Vetter T., Iggland M., Ochsenbein D. R., Hänseler F. S., Mazzotti M., Cryst. Growth Des. 2013, 13, 4890;

Madras G., McCoy B. J., Chem. Eng. Sci. 2004, 59, 2753.

Qin S., Kim H., Denisov N., Fehn D., Schmidt J., Meyer K., Schmuki P., J. Phys. E 2021, 3, 034003.

Siuzdak K., Sawczak M., Klein M., Nowaczyk G., Jurga S., Cenian A., Phys. Chem. Chem. Phys. 2014, 16, 15199. PubMed

Chi M., Sun X., Sujan A., Davis Z., Tatarchuk B. J., Fuel 2019, 238, 454;

Regonini D., Jaroenworaluck A., Stevens R., Bowen C. R., Surf. Interface Anal. 2010, 42, 139.

D'Arienzo M., Carbajo J., Bahamonde A., Crippa M., Polizzi S., Scotti R., Wahba L., Morazzoni F., J. Am. Chem. Soc. 2011, 133, 17652. PubMed

Ouyang W., Muñoz-Batista M. J., Kubacka A., Luque R., Fernández-García M., Appl. Catal. B 2018, 238, 434;

Cha G., Hwang I., Hejazi S., Dobrota A. S., Pašti I. A., Osuagwu B., Kim H., Will J., Yokosawa T., Badura Z., Kment Š., Mohajernia S., Mazare A., Skorodumova N. V., Spiecker E., Schmuki P., iScience 2021, 24, 102938; PubMed PMC

Bamwenda G. R., Tsubota S., Nakamura T., Haruta M., J. Photochem. Photobiol. A 1995, 89, 177.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...