Facet-Control versus Co-Catalyst-Control in Photocatalytic H2 Evolution from Anatase TiO2 Nanocrystals
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
DFG
Erlangen DFG cluster of excellence, Engineering of Advanced Materials (EAM)
442826449
DFG
CEP Register
SCHM 1597/38-1
DFG
CEP Register
FA 336/13-1
DFG
CEP Register
PubMed
35112801
PubMed Central
PMC8889503
DOI
10.1002/open.202200010
Knihovny.cz E-resources
- Keywords
- Pt co-catalyst, anatase TiO2, crystal facet engineering, photocatalytic H2 evolution,
- Publication type
- Journal Article MeSH
Titanium dioxide (TiO2 ) and, in particular, its anatase polymorph, is widely studied for photocatalytic H2 production. In the present work, we examine the importance of reactive facets of anatase crystallites on the photocatalytic H2 evolution from aqueous methanol solutions. For this, we synthesized anatase TiO2 nanocrystals with a large amount of either {001} facets, that is, nanosheets, or {101} facets, that is, octahedral nanocubes, and examined their photocatalytic H2 evolution and then repeated this procedure with samples where Pt co-catalyst is present on all facets. Octahedral nanocubes with abundant {101} facets produce >4 times more H2 than nanosheets enriched in {001} facets if the reaction is carried out under co-catalyst-free conditions. For samples that carry Pt co-catalyst on both {001} and {101} facets, faceting loses entirely its significance. This demonstrates that the beneficial role of faceting, namely the introduction of {101} facets that act as electron transfer mediator is relevant only for co-catalyst-free TiO2 surfaces.
See more in PubMed
Rahman M. Z., Kibria M. G., Mullins C. B., Chem. Soc. Rev. 2020, 49, 1887; PubMed
Hong L.-F., Guo R.-T., Yuan Y., Ji X.-Y., Lin Z.-D., Li Z.-S., Pan W.-G., ChemSusChem 2021, 14, 539; PubMed
Chen X., Shen S., Guo L., Mao S. S., Chem. Rev. 2010, 110, 6503. PubMed
Fujishima A., Honda K., Nature 1972, 238, 37. PubMed
Wang H., Zhang L., Chen Z., Hu J., Li S., Wang Z., Liu J., Wang X., Chem. Soc. Rev. 2014, 43, 5234; PubMed
Zou Z., Ye J., Sayama K., Arakawa H., Nature 2001, 414, 625. PubMed
Melchionna M., Fornasiero P., ACS Catal. 2020, 10, 5493. PubMed PMC
Hainer A. S., Hodgins J. S., Sandre V., Vallieres M., Lanterna A. E., Scaiano J. C., ACS Energy Lett. 2018, 3, 542;
Lee K., Mazare A., Schmuki P., Chem. Rev. 2014, 114, 9385. PubMed
Kumaravel V., Mathew S., Bartlett J., Pillai S. C., Appl. Catal. B 2019, 244, 1021;
Wang Q., Domen K., Chem. Rev. 2020, 120, 919. PubMed
Nam Y., Lim J. H., Ko K. C., Lee J. Y., J. Mater. Chem. A 2019, 7, 13833;
Katal R., Masudy-Panah S., Tanhaei M., Farahani M. H. D. A., Jiangyong H., Chem. Eng. J. 2020, 384, 123384.
Diebold U., Surf. Sci. Rep. 2003, 48, 53.
Liu L., Gu X., Ji Z., Zou W., Tang C., Gao F., Dong L., J. Phys. Chem. C 2013, 117, 18578.
Tachikawa T., Majima T., Chem. Commun. 2012, 48, 3300; PubMed
Tachikawa T., Yamashita S., Majima T., J. Am. Chem. Soc. 2011, 133, 7197. PubMed
Liu G., Yang H. G., Pan J., Yang Y. Q., Lu G. Q., Cheng H.-M., Chem. Rev. 2014, 114, 9559. PubMed
Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M., Lu G. Q., Nature 2008, 453, 638. PubMed
Joo J., Chow B. Y., Prakash M., Boyden E. S., Jacobson J. M., Nat. Mater. 2011, 10, 596; PubMed PMC
Lahav M., Leiserowitz L., Chem. Eng. Sci. 2001, 56, 2245;
Barnard A. S., Curtiss L. A., Nano Lett. 2005, 5, 1261. PubMed
Zheng Z., Huang B., Lu J., Qin X., Zhang X., Dai Y., Chem. Eur. J. 2011, 17, 15032; PubMed
Yu J., Low J., Xiao W., Zhou P., Jaroniec M., J. Am. Chem. Soc. 2014, 136, 8839; PubMed
Kashiwaya S., Toupance T., Klein A., Jaegermann W., Adv. Energy Mater. 2018, 8, 1802195.
Kobayashi K., Takashima M., Takase M., Ohtani B., Catalysts 2018, 8, 542;
Liu C., Han X., Xie S., Kuang Q., Wang X., Jin M., Xie Z., Zheng L., Chem. Asian J. 2013, 8, 282. PubMed
Ye L., Mao J., Liu J., Jiang Z., Peng T., Zan L., J. Mater. Chem. A 2013, 1, 10532.
Zhang D., Li G., Yang X., Yu J. C., Chem. Commun. 2009, 29, 4381. PubMed
Vetter T., Iggland M., Ochsenbein D. R., Hänseler F. S., Mazzotti M., Cryst. Growth Des. 2013, 13, 4890;
Madras G., McCoy B. J., Chem. Eng. Sci. 2004, 59, 2753.
Qin S., Kim H., Denisov N., Fehn D., Schmidt J., Meyer K., Schmuki P., J. Phys. E 2021, 3, 034003.
Siuzdak K., Sawczak M., Klein M., Nowaczyk G., Jurga S., Cenian A., Phys. Chem. Chem. Phys. 2014, 16, 15199. PubMed
Chi M., Sun X., Sujan A., Davis Z., Tatarchuk B. J., Fuel 2019, 238, 454;
Regonini D., Jaroenworaluck A., Stevens R., Bowen C. R., Surf. Interface Anal. 2010, 42, 139.
D'Arienzo M., Carbajo J., Bahamonde A., Crippa M., Polizzi S., Scotti R., Wahba L., Morazzoni F., J. Am. Chem. Soc. 2011, 133, 17652. PubMed
Ouyang W., Muñoz-Batista M. J., Kubacka A., Luque R., Fernández-García M., Appl. Catal. B 2018, 238, 434;
Cha G., Hwang I., Hejazi S., Dobrota A. S., Pašti I. A., Osuagwu B., Kim H., Will J., Yokosawa T., Badura Z., Kment Š., Mohajernia S., Mazare A., Skorodumova N. V., Spiecker E., Schmuki P., iScience 2021, 24, 102938; PubMed PMC
Bamwenda G. R., Tsubota S., Nakamura T., Haruta M., J. Photochem. Photobiol. A 1995, 89, 177.