A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing

. 2021 Feb 17 ; 13 (4) : . [epub] 20210217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33671195

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407 Innovative and additive manufacturing technology - new technological solutions for 3D printing of metals and composite materials, financed by Structural Funds of European Union and project.

Additive manufacturing (3D printing) has significantly changed the prototyping process in terms of technology, construction, materials, and their multiphysical properties. Among the most popular 3D printing techniques is vat photopolymerization, in which ultraviolet (UV) light is deployed to form chains between molecules of liquid light-curable resin, crosslink them, and as a result, solidify the resin. In this manuscript, three photopolymerization technologies, namely, stereolithography (SLA), digital light processing (DLP), and continuous digital light processing (CDLP), are reviewed. Additionally, the after-cured mechanical properties of light-curable resin materials are listed, along with a number of case studies showing their applications in practice. The manuscript aims at providing an overview and future trend of the photopolymerization technology to inspire the readers to engage in further research in this field, especially regarding developing new materials and mathematical models for microrods and bionic structures.

Zobrazit více v PubMed

History of Additive Manufacturing. [(accessed on 6 February 2020)]; Available online: http://www.wohlersassociates.com/history2014.pdf/

The Free Beginner’s Guide to 3D Printing. [(accessed on 6 February 2020)]; Available online: https://3dprintingindustry.com/3d-printing-basics-free-beginners-guide/

History of EOS Company. [(accessed on 6 February 2020)]; Available online: https://www.eos.info/about_eos/history/

The Complete History of 3D Printing: From 1980 to the Present Day. [(accessed on 6 February 2020)]; Available online: https://3dsourced.com/guides/history-of-3d-printing/

Barron J., Wu P., Ladouceur H., Ringeisen B. Biological Laser Printing: A Novel Technique for Creating Heterogeneous 3-dimensional Cell Patterns. Biomed. Microdevices. 2004;6:139–147. doi: 10.1023/B:BMMD.0000031751.67267.9f. PubMed DOI

Derby B. Printing and Prototyping of Tissues and Scaffolds. Science. 2012;338:921–926. doi: 10.1126/science.1226340. PubMed DOI

Jang E.H., Kim J.-H., Lee J.H., Kim D.-H., Youn Y.-N. Enhanced Biocompatibility of Multi-Layered, 3D Bio-Printed Artificial Vessels Composed of Autologous Mesenchymal Stem Cells. Polymers. 2020;12:538. doi: 10.3390/polym12030538. PubMed DOI PMC

Chia H., Wu B. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 2015;9:1–14. doi: 10.1186/s13036-015-0001-4. PubMed DOI PMC

ASTM International . ISO/ASTM 52900:2015 Additive Manufacturing—General Principles—Terminology. ASTM; West Conshohocken, PA, USA: 2015. p. 5.

Fiedor P., Pilch M., Szymaszek P., Chachaj-Brekiesz A., Galek M., Ortyl J. Photochemical Study of a New Bimolecular Photoinitiating System for Vat Photopolymerization 3D Printing Techniques under Visible Light. Catalysts. 2020;10:284. doi: 10.3390/catal10030284. DOI

Crivello J., Reichmanis E. Photopolymer Materials and Processes for Advanced Technologies. Chem. Mater. 2013;26:533–548. doi: 10.1021/cm402262g. DOI

Phillips R. Photopolymerization. J. Photochem. 1984;25:79–82. doi: 10.1016/0047-2670(84)85016-9. DOI

A Primer on UV-Curable Inkjet Inks. [(accessed on 6 February 2020)]; Available online: http://www.signindustry.com/flatbed_UV/articles/2008-11-17-SGIA_Primer_on_UV-Curable_Inkjet_Inks.php3/

Ravve A. Light-Associated Reactions of Synthetic Polymers. Springer; New York, NY, USA: 2006.

Desimone J., Alexander M., Nikita E., Edward E., Smulski T. Continous Liquid Interphase Printing. PCT/US2014/015506. U.S. Patent. 2014 Aug 21;

Tumbleston J.R., Shirvanyants D., Ermoshkin N., Janusziewicz R., Johnson A.R., Kelly D., DeSimone J.M. Continuous liquid interface production of 3D objects. Science. 2015;347:1349–1352. doi: 10.1126/science.aaa2397. PubMed DOI

Huang B.H.R., Xue Z., Zhao J., Li Q., Xia T., Zhang W., Lu C. Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties. Carbohydr. Polym. 2020;231:115736. doi: 10.1016/j.carbpol.2019.115736. PubMed DOI

Redwood B., Schoöffer F., Garet B. The 3D Printing Handbook: Technologies, Design and Applications. 3D Hubs; Amsterdam, The Netherlands: 2017.

Bártolo P. Stereolithography: Materials, Processes and Applications. Springer; New York, NY, USA: 2011.

Janusziewicz R., Tumbleston J.R., Quintanilla A.L., Mecham S.J., DeSimone J.M. Layerless fabrication with continuous liquid interface production. Proc. Natl. Acad. Sci. USA. 2016;113:11703–11708. doi: 10.1073/pnas.1605271113. PubMed DOI PMC

Stereolithography, SLA. [(accessed on 22 July 2020)]; Available online: https://www.manufacturingguide.com/en/stereolithography-sla.

Lemma E., Spagnolo B., De Vittorio M., Pisanello F. Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach. Trends Biotechnol. 2019;37:358–372. doi: 10.1016/j.tibtech.2018.09.008. PubMed DOI

Bass M. Handbook of Optics: Fundamentals, Techniques, and Design. McGraw-Hill Professional; New York, NY, USA: 1994.

SLA vs. DLP: Guide to Resin 3D Printers. [(accessed on 22 July 2020)]; Available online: https://formlabs.com/blog/resin-3d-printer-comparison-sla-vs-dlp/

Zhou X., Hou Y., Lin J. A review on the processing accuracy of two-photon polymerization. AIP Adv. 2015;5:030701. doi: 10.1063/1.4916886. DOI

Ostendorf A., Chichkov B.N. Two-photon polymerization: A new approach to micromachining. Photon Spectra. 2006;40:72.

Using Draft Resin. [(accessed on 23 July 2020)]; Available online: https://support.formlabs.com/s/article/Using-Draft-Resin?language=en_US//

Standard. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/Clear_Resin_Technical.pdf/

Draft Resin. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/Draft_DataSheet_.pdf/

Grey Pro. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/Grey_Pro_Technical.pdf/

Rigid. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/Rigid_Technical.pdf/

High Temp. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/High_Temp_Technical.pdf/

Durable. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/1801084-TDS-ENUS-0P.pdf/

Tough 1500. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/Tough_1500_TDS_EN.pdf/

Elastic. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/Elastic_Resin_Technical.pdf/

Flexible. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/Flexible_Technical.pdf/

Ceramic. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/1907180-TDS-ENUS-0.pdf/

Castable Wax. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/Castable_Wax_Technical_Data_Sheet.pdf/

How ROE Dental Lab Pivoted to Manufacturing Medical Supplies to Fight COVID-19. [(accessed on 23 July 2020)]; Available online: https://dental.formlabs.com/eu/blog/roe-dental-manufacturing-medical-supplies-swabs-covid-19/

Biomodex. [(accessed on 23 July 2020)]; Available online: https://www.biomodex.com/

Dental LT Clear. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/Dental_LT_Clear_Technical.pdf/

Dental SG. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/DentalSG-DataSheet.pdf/

Surgical Guide. [(accessed on 23 July 2020)]; Available online: https://formlabs-media.formlabs.com/datasheets/surgical_guide_technical_data_sheet_en.pdf/

Gopinathan J., Noh I. Recent trends in bioinks for 3D printing. Biomater. Res. 2018;22:11. doi: 10.1186/s40824-018-0122-1. PubMed DOI PMC

A Guide to Matrix Bioinks. [(accessed on 23 July 2020)]; Available online: https://www.allevi3d.com/a-guide-to-matrix-bioinks/

Farsari M., Chichkov B. Two-photon fabrication. Nat. Photon. 2009;3:450–452. doi: 10.1038/nphoton.2009.131. DOI

Rideell Partners with Carbon to Produce First-Ever 3D Printed Football Helmet Liner. [(accessed on 6 February 2020)]; Available online: https://www.carbon3d.com/news/riddell-partners-with-carbon-to-produce-next-gen-football-helmet/

8sole. [(accessed on 6 February 2020)]; Available online: https://www.8sole.com/

Derek Luther: Zahájil jsem evoluci aditivní výroby v Adidasu. [(accessed on 6 February 2020)]; Available online: https://www.konstrukter.cz/derek-luther-zahajil-jsem-evoluci-aditivni-vyroby-v-adidasu/

Using 3D Scanning and Printing to Help Children with Ear Deformities. [(accessed on 6 February 2020)]; Available online: https://www.artec3d.com/cases/prosthetic-3d-printed-ear-implants/

Sonova’s Custom Hearing Aids are Discreet and Efficiently Made. [(accessed on 6 February 2020)]; Available online: https://www.trendhunter.com/trends/3d-printed-hearing-aids/

Nasopharyngeal Swabs. [(accessed on 6 December 2020)]; Available online: https://www.carbon3d.com/covid19/

New Light-Touch Supports for Castable Wax Resin in PreForm 3.4.6. [(accessed on 23 July 2020)]; Available online: https://formlabs.com/eu/blog/easier-post-processing-jewelry-3d-prints/

Hsieh T., Ng C.B., Narayanan K., Wan A., Ying J. Three-dimensional microstructured tissue scaffolds fabricated by two-photon laser scanning photolithography. Biomaterials. 2010;31:7648–7652. doi: 10.1016/j.biomaterials.2010.06.029. PubMed DOI

Suzuki M., Takahashi T., Aoyagi S. 3D laser lithographic fabrication of hollow microneedle mimicking mosquitos and its characterization. Int. J. Nanotechnol. 2018;15:157–173. doi: 10.1504/IJNT.2018.089545. DOI

Göring G., Dietrich P.I., Blaicher M., Sharma S., Korvink J.G., Schimmel T., Koos C., Hölscher H. Tailored probes for atomic force microscopy fabricated by two-photon polymerization. Appl. Phys. Lett. 2016;109:063101. doi: 10.1063/1.4960386. DOI

Zhou L., Gao Q., Fu J., Chen Q., Zhu J., Sun Y., He Y. Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers. ACS Appl. Mater. Interfaces. 2019;11:23573–23583. doi: 10.1021/acsami.9b04873. PubMed DOI

Valentine A., Busbee T., Boley J., Raney J., Chortos A., Kotikian A., Berrigan J., Durstock M., Lewis J. Hybrid 3D Printing of Soft Electronics. Adv. Mater. 2017;29:1703817. doi: 10.1002/adma.201703817. PubMed DOI

Truby R., Lewis J. Printing soft matter in three dimensions. Nature. 2016;540:371–378. doi: 10.1038/nature21003. PubMed DOI

Tawk C., in het Panhuis M., Spinks G., Alici G. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles. Soft Robot. 2018;5:685–694. doi: 10.1089/soro.2018.0021. PubMed DOI

Duoss E., Weisgraber T., Hearon K., Zhu C., Small W., Metz T., Vericella J., Barth H., Kuntz J., Maxwell R., et al. Three-Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness. Adv. Funct. Mater. 2014;24:4905–4913. doi: 10.1002/adfm.201400451. DOI

Bagheri A., Jin J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019;1:593–611. doi: 10.1021/acsapm.8b00165. DOI

Graeber G., Martin Kieliger O., Schutzius T., Poulikakos D. 3D-Printed Surface Architecture Enhancing Superhydrophobicity and Viscous Droplet Repellency. ACS Appl. Mater. Interfaces. 2018;10:43275–43281. doi: 10.1021/acsami.8b16893. PubMed DOI

Gupta T., Strelcov E., Holland G., Schumacher J., Yang Y., Esch M., Aksyuk V., Zeller P., Amati M., Gregoratti L., et al. Electron and X-ray Focused Beam-Induced Cross-Linking in Liquids: Toward Rapid Continuous 3D Nanoprinting and Interfacing using Soft Materials. ACS Nano. 2020;14:12982–12992. doi: 10.1021/acsnano.0c04266. PubMed DOI PMC

Cui H., Zhu W., Holmes B., Zhang L. Biologically Inspired Smart Release System Based on 3D Bioprinted Perfused Scaffold for Vascularized Tissue Regeneration. Adv. Sci. 2016;3:1600058. doi: 10.1002/advs.201600058. PubMed DOI PMC

Clausen A., Wang F., Jensen J., Sigmund O., Lewis J. Topology Optimized Architectures with Programmable Poisson’s Ratio over Large Deformations. Adv. Mater. 2015;27:5523–5527. doi: 10.1002/adma.201502485. PubMed DOI

López-Valdeolivas M., Liu D., Broer D., Sánchez-Somolinos C. 4D Printed Actuators with Soft-Robotic Functions. Macromol. Rapid Commun. 2018;39:1700710. doi: 10.1002/marc.201700710. PubMed DOI

Zarek M., Layani M., Cooperstein I., Sachyani E., Cohn D., Magdassi S. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Adv. Mater. 2016;28:4449–4454. doi: 10.1002/adma.201503132. PubMed DOI

Kelly B., Bhattacharya I., Heidari H., Shusteff M., Spadaccini C., Taylor H. Volumetric additive manufacturing via tomographic reconstruction. Science. 2019;363:1075–1079. doi: 10.1126/science.aau7114. PubMed DOI

Chen M., Lee H., Yang J., Xu Z., Huang N., Chan B., Kim J. Parallel, Multi-Material Electrohydrodynamic 3D Nanoprinting. Small. 2020;16:1906402. doi: 10.1002/smll.201906402. PubMed DOI

Kiefer P., Hahn V., Nardi M., Yang L., Blasco E., Barner-Kowollik C., Wegener M. Sensitive Photoresists for Rapid Multiphoton 3D Laser Micro- and Nanoprinting. Adv. Opt. Mater. 2020;8:2000895. doi: 10.1002/adom.202000895. DOI

Loterie D., Delrot P., Moser C. High-resolution tomographic volumetric additive manufacturing. Nat. Commun. 2020;11:1–6. doi: 10.1038/s41467-020-14630-4. PubMed DOI PMC

Robotics, Sensors, & Devices. [(accessed on 12 February 2021)]; Available online: https://www.sri.com/robotics-sensors-devices/

Tijing L., Dizon J., Ibrahim I., Nisay A., Shon H., Advincula R. 3D printing for membrane separation, desalination and water treatment. Appl. Mater. Today. 2020;18:100486. doi: 10.1016/j.apmt.2019.100486. DOI

Kuang X., Roach D., Wu J., Hamel C., Ding Z., Wang T., Dunn M., Qi H. Advances in 4D Printing: Materials and Applications. Adv. Funct. Mater. 2018;29:1805290. doi: 10.1002/adfm.201805290. DOI

On the Road to 3D Printed Organs. [(accessed on 6 December 2020)]; Available online: https://www.the-scientist.com/news-opinion/on-the-road-to-3-d-printed-organs-67187/

Wu Y., Heikal L., Ferns G., Ghezzi P., Nokhodchi A., Maniruzzaman M. 3D Bioprinting of Novel Biocompatible Scaffolds for Endothelial Cell Repair. Polymers. 2019;11:1924. doi: 10.3390/polym11121924. PubMed DOI PMC

Hospodiuk M., Dey M., Sosnoski D., Ozbolat I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017;35:217–239. doi: 10.1016/j.biotechadv.2016.12.006. PubMed DOI

Mironov V., Boland T., Trusk T., Forgacs G., Markwald R.R. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21:157–161. doi: 10.1016/S0167-7799(03)00033-7. PubMed DOI

Kunimoto K. Turn to the Future for Living Body Medical Design; Proceedings of the Simulation Community Conference “Science in the Age of Experience” 2017; Chicago, IL, USA. 15–18 May 2017.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...