Investigation of Microstructure and Mechanical Properties of SLM-Fabricated AlSi10Mg Alloy Post-Processed Using Equal Channel Angular Pressing (ECAP)

. 2022 Nov 10 ; 15 (22) : . [epub] 20221110

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36431429

Grantová podpora
2021/43/D/ST8/1 946 National Science Center

With the aim of improving the excellent mechanical properties of the SLM-produced AlSi10Mg alloy, this research focuses on post-processing using ECAP (Equal Channel Angular Pressing). In our article, two different post-processing strategies were investigated: (1) low-temperature annealing (LTA) and subsequent ECAP processing at 150 °C; (2) no heat treatment and subsequent ECAP processing at 350 °C, 400 °C and 450 °C. The microstructure and mechanical properties of this alloy were analyzed at each stage of post-treatment. Metallographic observations, combined with SEM and EBSD studies, showed that the alloys produced by SLM have a unique cellular microstructure consisting of Si networks surrounding the Al-based matrix phase. Low-temperature annealing (LTA), followed by ECAP treatment, facilitated the microstructural evolution of the alloy with partial breakup of the Si network and observed nucleation of β-Si precipitates throughout the Al matrix. This resulted in a Vickers microhardness of 153 HV and a yield strength of 415 MPa. The main results show that post-processing of SLM-produced AlSi10Mg alloys using ECAP significantly affects the microstructural evolution and mechanical properties of the alloy.

Zobrazit více v PubMed

Hehr A., Norfolk M. A Comprehensive Review of Ultrasonic Additive Manufacturing. Rapid Prototyp. J. 2020;26:445–458. doi: 10.1108/RPJ-03-2019-0056. DOI

Gibson I., Rosen D., Stucker B., Khorasani M. Additive Manufacturing Technologies. Springer; Berlin/Heidelberg, Germany: 2021. Binder Jetting; pp. 237–252.

Yap Y.L., Wang C., Sing S.L., Dikshit V., Yeong W.Y., Wei J. Material Jetting Additive Manufacturing: An Experimental Study Using Designed Metrological Benchmarks. Precis. Eng. 2017;50:275–285. doi: 10.1016/j.precisioneng.2017.05.015. DOI

Saboori A., Aversa A., Marchese G., Biamino S., Lombardi M., Fino P. Application of Directed Energy Deposition-Based Additive Manufacturing in Repair. Appl. Sci. 2019;9:3316. doi: 10.3390/app9163316. DOI

Sun S., Brandt M., Easton M. Laser Additive Manufacturing. Elsevier; Amsterdam, The Netherlands: 2017. Powder Bed Fusion Processes: An Overview; pp. 55–77.

Pagac M., Hajnys J., Ma Q.-P., Jancar L., Jansa J., Stefek P., Mesicek J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3d Printing. Polymers. 2021;13:598. doi: 10.3390/polym13040598. PubMed DOI PMC

Elambasseril J., Rogers J., Wallbrink C., Munk D., Leary M., Qian M. Laser Powder Bed Fusion Additive Manufacturing (LPBF-AM): The Influence of Design Features and LPBF Variables on Surface Topography and Effect on Fatigue Properties. Crit. Rev. Solid State Mater. Sci. 2022:1–37. doi: 10.1080/10408436.2022.2041396. DOI

Hojjatzadeh S.M.H., Parab N.D., Guo Q., Qu M., Xiong L., Zhao C., Escano L.I., Fezzaa K., Everhart W., Sun T. Direct Observation of Pore Formation Mechanisms during LPBF Additive Manufacturing Process and High Energy Density Laser Welding. Int. J. Mach. Tools Manuf. 2020;153:103555. doi: 10.1016/j.ijmachtools.2020.103555. DOI

Safaei K., Abedi H., Nematollahi M., Kordizadeh F., Dabbaghi H., Bayati P., Javanbakht R., Jahadakbar A., Elahinia M., Poorganji B. Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem. JOM. 2021;73:3771–3786. doi: 10.1007/s11837-021-04937-y. DOI

Nandy J., Sarangi H., Sahoo S. A Review on Direct Metal Laser Sintering: Process Features and Microstructure Modeling. Lasers Manuf. Mater. Process. 2019;6:280–316. doi: 10.1007/s40516-019-00094-y. DOI

Gueche Y.A., Sanchez-Ballester N.M., Cailleaux S., Bataille B., Soulairol I. Selective Laser Sintering (SLS), a New Chapter in the Production of Solid Oral Forms (SOFs) by 3D Printing. Pharmaceutics. 2021;13:1212. doi: 10.3390/pharmaceutics13081212. PubMed DOI PMC

Del Guercio G., Galati M., Saboori A., Fino P., Iuliano L. Microstructure and Mechanical Performance of Ti–6Al–4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review. Acta Metall. Sin. Engl. Lett. 2020;33:183–203. doi: 10.1007/s40195-020-00998-1. DOI

Rajamani D., Balasubramanian E. Investigation of Sintering Parameters on Viscoelastic Behaviour of Selective Heat Sintered HDPE Parts. J. Appl. Sci. Eng. 2019;22:391–402.

Zhang H., Zhao Y., Huang S., Zhu S., Wang F., Li D. Manufacturing and Analysis of High-Performance Refractory High-Entropy Alloy via Selective Laser Melting (SLM) Materials. 2019;12:720. doi: 10.3390/ma12050720. PubMed DOI PMC

Arun K., Aravindh K., Raja K., Naiju C.D., Thrinadh E., Ranka S. Characterization of AlSi10Mg Alloy Produced by DMLS Process for Automotive Engine Application. SAE; Warrendale, PA, USA: 2019. SAE Technical Paper.

Li Z., Nie Y., Liu B., Kuai Z., Zhao M., Liu F. Mechanical Properties of AlSi10Mg Lattice Structures Fabricated by Selective Laser Melting. Mater. Des. 2020;192:108709. doi: 10.1016/j.matdes.2020.108709. DOI

Chen B., Moon S., Yao X., Bi G., Shen J., Umeda J., Kondoh K. Strength and Strain Hardening of a Selective Laser Melted AlSi10Mg Alloy. Scr. Mater. 2017;141:45–49. doi: 10.1016/j.scriptamat.2017.07.025. DOI

Li Z., Li Z., Tan Z., Xiong D.-B., Guo Q. Stress Relaxation and the Cellular Structure-Dependence of Plastic Deformation in Additively Manufactured AlSi10Mg Alloys. Int. J. Plast. 2020;127:102640. doi: 10.1016/j.ijplas.2019.12.003. DOI

Ma R., Peng C., Cai Z., Wang R., Zhou Z., Li X., Cao X. Enhanced Strength of the Selective Laser Melted Al-Mg-Sc-Zr Alloy by Cold Rolling. Mater. Sci. Eng. A. 2020;775:138975. doi: 10.1016/j.msea.2020.138975. DOI

Snopiński P., Król M., Pagáč M., Petrů J., Hajnyš J., Mikuszewski T., Tański T. Effects of Equal Channel Angular Pressing and Heat Treatments on the Microstructures and Mechanical Properties of Selective Laser Melted and Cast AlSi10Mg Alloys. Arch. Civ. Mech. Eng. 2021;21:92. doi: 10.1007/s43452-021-00246-y. DOI

Hosseinzadeh A., Radi A., Richter J., Wegener T., Sajadifar S.V., Niendorf T., Yapici G.G. Severe Plastic Deformation as a Processing Tool for Strengthening of Additive Manufactured Alloys. J. Manuf. Process. 2021;68:788–795. doi: 10.1016/j.jmapro.2021.05.070. DOI

Snopiński P., Matus K., Tatiček F., Rusz S. Overcoming the Strength-Ductility Trade-off in Additively Manufactured AlSi10Mg Alloy by ECAP Processing. J. Alloys Compd. 2022;918:165817. doi: 10.1016/j.jallcom.2022.165817. DOI

Wang G., Song D., Zhou Z., Liu Y., Liang N., Wu Y., Ma A., Jiang J. Developing High-Strength Ultrafine-Grained Pure Al via Large-Pass ECAP and Post Cryo-Rolling. J. Mater. Res. Technol. 2021;15:2419–2428. doi: 10.1016/j.jmrt.2021.09.085. DOI

Maamoun A.H., Elbestawi M., Dosbaeva G.K., Veldhuis S.C. Thermal Post-Processing of AlSi10Mg Parts Produced by Selective Laser Melting Using Recycled Powder. Addit. Manuf. 2018;21:234–247. doi: 10.1016/j.addma.2018.03.014. DOI

Sagbas B. Post-Processing Effects on Surface Properties of Direct Metal Laser Sintered AlSi10Mg Parts. Met. Mater. Int. 2020;26:143–153. doi: 10.1007/s12540-019-00375-3. DOI

Zhuo L., Wang Z., Zhang H., Yin E., Wang Y., Xu T., Li C. Effect of Post-Process Heat Treatment on Microstructure and Properties of Selective Laser Melted AlSi10Mg Alloy. Mater. Lett. 2019;234:196–200. doi: 10.1016/j.matlet.2018.09.109. DOI

Snopiński P., Woźniak A., Pagáč M. Microstructural Evolution, Hardness, and Strengthening Mechanisms in SLM AlSi10Mg Alloy Subjected to Equal-Channel Angular Pressing (ECAP) Materials. 2021;14:7598. doi: 10.3390/ma14247598. PubMed DOI PMC

Zhang H., Wang Y., Wang J.J., Ni D.R., Wang D., Xiao B.L., Ma Z.Y. Achieving Superior Mechanical Properties of Selective Laser Melted AlSi10Mg via Direct Aging Treatment. J. Mater. Sci. Technol. 2022;108:226–235. doi: 10.1016/j.jmst.2021.07.059. DOI

Liu M., Zheng R., Xiao W., Li J., Li G., Peng Q., Ma C. Bulk Nanostructured Al-Si Alloy with Remarkable Improvement in Strength and Ductility. Scr. Mater. 2021;201:113970. doi: 10.1016/j.scriptamat.2021.113970. DOI

Wei P., Chen Z., Zhang S., Fang X., Lu B., Zhang L., Wei Z. Effect of T6 Heat Treatment on the Surface Tribological and Corrosion Properties of AlSi10Mg Samples Produced by Selective Laser Melting. Mater. Charact. 2021;171:110769. doi: 10.1016/j.matchar.2020.110769. DOI

Zhao X., Yue Z., Wang G., Li Z., Soyarslan C. Role of GNDs in Bending Strength Gain of Multilayer Deposition Generated Heterostructured Bulk Aluminum. Mater. Des. 2022;219:110769. doi: 10.1016/j.matdes.2022.110769. DOI

Ashby M. The Deformation of Plastically Non-Homogeneous Materials. Philos. Mag. J. Theor. Exp. Appl. Phys. 1970;21:399–424. doi: 10.1080/14786437008238426. DOI

Aboulkhair N.T., Maskery I., Tuck C., Ashcroft I., Everitt N.M. The Microstructure and Mechanical Properties of Selectively Laser Melted AlSi10Mg: The Effect of a Conventional T6-like Heat Treatment. Mater. Sci. Eng. A. 2016;667:139–146. doi: 10.1016/j.msea.2016.04.092. DOI

Poncelet O., Marteleur M., van der Rest C., Rigo O., Adrien J., Dancette S., Jacques P., Simar A. Critical Assessment of the Impact of Process Parameters on Vertical Roughness and Hardness of Thin Walls of AlSi10Mg Processed by Laser Powder Bed Fusion. Addit. Manuf. 2021;38:101801. doi: 10.1016/j.addma.2020.101801. DOI

Patakham U., Palasay A., Wila P., Tongsri R. MPB Characteristics and Si Morphologies on Mechanical Properties and Fracture Behavior of SLM AlSi10Mg. Mater. Sci. Eng. A. 2021;821:141602. doi: 10.1016/j.msea.2021.141602. DOI

Liu L., Ding Q., Zhong Y., Zou J., Wu J., Chiu Y.-L., Li J., Zhang Z., Yu Q., Shen Z. Dislocation Network in Additive Manufactured Steel Breaks Strength–Ductility Trade-Off. Mater. Today. 2018;21:354–361. doi: 10.1016/j.mattod.2017.11.004. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...