Investigation of Microstructure and Mechanical Properties of SLM-Fabricated AlSi10Mg Alloy Post-Processed Using Equal Channel Angular Pressing (ECAP)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2021/43/D/ST8/1 946
National Science Center
PubMed
36431429
PubMed Central
PMC9697299
DOI
10.3390/ma15227940
PII: ma15227940
Knihovny.cz E-zdroje
- Klíčová slova
- AlSi10Mg alloy, electron backscatter diffraction (EBSD), equal channel angular pressing (ECAP), microhardness, microstructure, scanning electron microscopy, yield strength,
- Publikační typ
- časopisecké články MeSH
With the aim of improving the excellent mechanical properties of the SLM-produced AlSi10Mg alloy, this research focuses on post-processing using ECAP (Equal Channel Angular Pressing). In our article, two different post-processing strategies were investigated: (1) low-temperature annealing (LTA) and subsequent ECAP processing at 150 °C; (2) no heat treatment and subsequent ECAP processing at 350 °C, 400 °C and 450 °C. The microstructure and mechanical properties of this alloy were analyzed at each stage of post-treatment. Metallographic observations, combined with SEM and EBSD studies, showed that the alloys produced by SLM have a unique cellular microstructure consisting of Si networks surrounding the Al-based matrix phase. Low-temperature annealing (LTA), followed by ECAP treatment, facilitated the microstructural evolution of the alloy with partial breakup of the Si network and observed nucleation of β-Si precipitates throughout the Al matrix. This resulted in a Vickers microhardness of 153 HV and a yield strength of 415 MPa. The main results show that post-processing of SLM-produced AlSi10Mg alloys using ECAP significantly affects the microstructural evolution and mechanical properties of the alloy.
Zobrazit více v PubMed
Hehr A., Norfolk M. A Comprehensive Review of Ultrasonic Additive Manufacturing. Rapid Prototyp. J. 2020;26:445–458. doi: 10.1108/RPJ-03-2019-0056. DOI
Gibson I., Rosen D., Stucker B., Khorasani M. Additive Manufacturing Technologies. Springer; Berlin/Heidelberg, Germany: 2021. Binder Jetting; pp. 237–252.
Yap Y.L., Wang C., Sing S.L., Dikshit V., Yeong W.Y., Wei J. Material Jetting Additive Manufacturing: An Experimental Study Using Designed Metrological Benchmarks. Precis. Eng. 2017;50:275–285. doi: 10.1016/j.precisioneng.2017.05.015. DOI
Saboori A., Aversa A., Marchese G., Biamino S., Lombardi M., Fino P. Application of Directed Energy Deposition-Based Additive Manufacturing in Repair. Appl. Sci. 2019;9:3316. doi: 10.3390/app9163316. DOI
Sun S., Brandt M., Easton M. Laser Additive Manufacturing. Elsevier; Amsterdam, The Netherlands: 2017. Powder Bed Fusion Processes: An Overview; pp. 55–77.
Pagac M., Hajnys J., Ma Q.-P., Jancar L., Jansa J., Stefek P., Mesicek J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3d Printing. Polymers. 2021;13:598. doi: 10.3390/polym13040598. PubMed DOI PMC
Elambasseril J., Rogers J., Wallbrink C., Munk D., Leary M., Qian M. Laser Powder Bed Fusion Additive Manufacturing (LPBF-AM): The Influence of Design Features and LPBF Variables on Surface Topography and Effect on Fatigue Properties. Crit. Rev. Solid State Mater. Sci. 2022:1–37. doi: 10.1080/10408436.2022.2041396. DOI
Hojjatzadeh S.M.H., Parab N.D., Guo Q., Qu M., Xiong L., Zhao C., Escano L.I., Fezzaa K., Everhart W., Sun T. Direct Observation of Pore Formation Mechanisms during LPBF Additive Manufacturing Process and High Energy Density Laser Welding. Int. J. Mach. Tools Manuf. 2020;153:103555. doi: 10.1016/j.ijmachtools.2020.103555. DOI
Safaei K., Abedi H., Nematollahi M., Kordizadeh F., Dabbaghi H., Bayati P., Javanbakht R., Jahadakbar A., Elahinia M., Poorganji B. Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem. JOM. 2021;73:3771–3786. doi: 10.1007/s11837-021-04937-y. DOI
Nandy J., Sarangi H., Sahoo S. A Review on Direct Metal Laser Sintering: Process Features and Microstructure Modeling. Lasers Manuf. Mater. Process. 2019;6:280–316. doi: 10.1007/s40516-019-00094-y. DOI
Gueche Y.A., Sanchez-Ballester N.M., Cailleaux S., Bataille B., Soulairol I. Selective Laser Sintering (SLS), a New Chapter in the Production of Solid Oral Forms (SOFs) by 3D Printing. Pharmaceutics. 2021;13:1212. doi: 10.3390/pharmaceutics13081212. PubMed DOI PMC
Del Guercio G., Galati M., Saboori A., Fino P., Iuliano L. Microstructure and Mechanical Performance of Ti–6Al–4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review. Acta Metall. Sin. Engl. Lett. 2020;33:183–203. doi: 10.1007/s40195-020-00998-1. DOI
Rajamani D., Balasubramanian E. Investigation of Sintering Parameters on Viscoelastic Behaviour of Selective Heat Sintered HDPE Parts. J. Appl. Sci. Eng. 2019;22:391–402.
Zhang H., Zhao Y., Huang S., Zhu S., Wang F., Li D. Manufacturing and Analysis of High-Performance Refractory High-Entropy Alloy via Selective Laser Melting (SLM) Materials. 2019;12:720. doi: 10.3390/ma12050720. PubMed DOI PMC
Arun K., Aravindh K., Raja K., Naiju C.D., Thrinadh E., Ranka S. Characterization of AlSi10Mg Alloy Produced by DMLS Process for Automotive Engine Application. SAE; Warrendale, PA, USA: 2019. SAE Technical Paper.
Li Z., Nie Y., Liu B., Kuai Z., Zhao M., Liu F. Mechanical Properties of AlSi10Mg Lattice Structures Fabricated by Selective Laser Melting. Mater. Des. 2020;192:108709. doi: 10.1016/j.matdes.2020.108709. DOI
Chen B., Moon S., Yao X., Bi G., Shen J., Umeda J., Kondoh K. Strength and Strain Hardening of a Selective Laser Melted AlSi10Mg Alloy. Scr. Mater. 2017;141:45–49. doi: 10.1016/j.scriptamat.2017.07.025. DOI
Li Z., Li Z., Tan Z., Xiong D.-B., Guo Q. Stress Relaxation and the Cellular Structure-Dependence of Plastic Deformation in Additively Manufactured AlSi10Mg Alloys. Int. J. Plast. 2020;127:102640. doi: 10.1016/j.ijplas.2019.12.003. DOI
Ma R., Peng C., Cai Z., Wang R., Zhou Z., Li X., Cao X. Enhanced Strength of the Selective Laser Melted Al-Mg-Sc-Zr Alloy by Cold Rolling. Mater. Sci. Eng. A. 2020;775:138975. doi: 10.1016/j.msea.2020.138975. DOI
Snopiński P., Król M., Pagáč M., Petrů J., Hajnyš J., Mikuszewski T., Tański T. Effects of Equal Channel Angular Pressing and Heat Treatments on the Microstructures and Mechanical Properties of Selective Laser Melted and Cast AlSi10Mg Alloys. Arch. Civ. Mech. Eng. 2021;21:92. doi: 10.1007/s43452-021-00246-y. DOI
Hosseinzadeh A., Radi A., Richter J., Wegener T., Sajadifar S.V., Niendorf T., Yapici G.G. Severe Plastic Deformation as a Processing Tool for Strengthening of Additive Manufactured Alloys. J. Manuf. Process. 2021;68:788–795. doi: 10.1016/j.jmapro.2021.05.070. DOI
Snopiński P., Matus K., Tatiček F., Rusz S. Overcoming the Strength-Ductility Trade-off in Additively Manufactured AlSi10Mg Alloy by ECAP Processing. J. Alloys Compd. 2022;918:165817. doi: 10.1016/j.jallcom.2022.165817. DOI
Wang G., Song D., Zhou Z., Liu Y., Liang N., Wu Y., Ma A., Jiang J. Developing High-Strength Ultrafine-Grained Pure Al via Large-Pass ECAP and Post Cryo-Rolling. J. Mater. Res. Technol. 2021;15:2419–2428. doi: 10.1016/j.jmrt.2021.09.085. DOI
Maamoun A.H., Elbestawi M., Dosbaeva G.K., Veldhuis S.C. Thermal Post-Processing of AlSi10Mg Parts Produced by Selective Laser Melting Using Recycled Powder. Addit. Manuf. 2018;21:234–247. doi: 10.1016/j.addma.2018.03.014. DOI
Sagbas B. Post-Processing Effects on Surface Properties of Direct Metal Laser Sintered AlSi10Mg Parts. Met. Mater. Int. 2020;26:143–153. doi: 10.1007/s12540-019-00375-3. DOI
Zhuo L., Wang Z., Zhang H., Yin E., Wang Y., Xu T., Li C. Effect of Post-Process Heat Treatment on Microstructure and Properties of Selective Laser Melted AlSi10Mg Alloy. Mater. Lett. 2019;234:196–200. doi: 10.1016/j.matlet.2018.09.109. DOI
Snopiński P., Woźniak A., Pagáč M. Microstructural Evolution, Hardness, and Strengthening Mechanisms in SLM AlSi10Mg Alloy Subjected to Equal-Channel Angular Pressing (ECAP) Materials. 2021;14:7598. doi: 10.3390/ma14247598. PubMed DOI PMC
Zhang H., Wang Y., Wang J.J., Ni D.R., Wang D., Xiao B.L., Ma Z.Y. Achieving Superior Mechanical Properties of Selective Laser Melted AlSi10Mg via Direct Aging Treatment. J. Mater. Sci. Technol. 2022;108:226–235. doi: 10.1016/j.jmst.2021.07.059. DOI
Liu M., Zheng R., Xiao W., Li J., Li G., Peng Q., Ma C. Bulk Nanostructured Al-Si Alloy with Remarkable Improvement in Strength and Ductility. Scr. Mater. 2021;201:113970. doi: 10.1016/j.scriptamat.2021.113970. DOI
Wei P., Chen Z., Zhang S., Fang X., Lu B., Zhang L., Wei Z. Effect of T6 Heat Treatment on the Surface Tribological and Corrosion Properties of AlSi10Mg Samples Produced by Selective Laser Melting. Mater. Charact. 2021;171:110769. doi: 10.1016/j.matchar.2020.110769. DOI
Zhao X., Yue Z., Wang G., Li Z., Soyarslan C. Role of GNDs in Bending Strength Gain of Multilayer Deposition Generated Heterostructured Bulk Aluminum. Mater. Des. 2022;219:110769. doi: 10.1016/j.matdes.2022.110769. DOI
Ashby M. The Deformation of Plastically Non-Homogeneous Materials. Philos. Mag. J. Theor. Exp. Appl. Phys. 1970;21:399–424. doi: 10.1080/14786437008238426. DOI
Aboulkhair N.T., Maskery I., Tuck C., Ashcroft I., Everitt N.M. The Microstructure and Mechanical Properties of Selectively Laser Melted AlSi10Mg: The Effect of a Conventional T6-like Heat Treatment. Mater. Sci. Eng. A. 2016;667:139–146. doi: 10.1016/j.msea.2016.04.092. DOI
Poncelet O., Marteleur M., van der Rest C., Rigo O., Adrien J., Dancette S., Jacques P., Simar A. Critical Assessment of the Impact of Process Parameters on Vertical Roughness and Hardness of Thin Walls of AlSi10Mg Processed by Laser Powder Bed Fusion. Addit. Manuf. 2021;38:101801. doi: 10.1016/j.addma.2020.101801. DOI
Patakham U., Palasay A., Wila P., Tongsri R. MPB Characteristics and Si Morphologies on Mechanical Properties and Fracture Behavior of SLM AlSi10Mg. Mater. Sci. Eng. A. 2021;821:141602. doi: 10.1016/j.msea.2021.141602. DOI
Liu L., Ding Q., Zhong Y., Zou J., Wu J., Chiu Y.-L., Li J., Zhang Z., Yu Q., Shen Z. Dislocation Network in Additive Manufactured Steel Breaks Strength–Ductility Trade-Off. Mater. Today. 2018;21:354–361. doi: 10.1016/j.mattod.2017.11.004. DOI