Microstructural Evolution, Hardness, and Strengthening Mechanisms in SLM AlSi10Mg Alloy Subjected to Equal-Channel Angular Pressing (ECAP)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34947192
PubMed Central
PMC8708603
DOI
10.3390/ma14247598
PII: ma14247598
Knihovny.cz E-zdroje
- Klíčová slova
- EBSD, ECAP, grain refinement, hardness, microstructure, selective laser melting,
- Publikační typ
- časopisecké články MeSH
The AlSi10Mg alloy is characterized by a high strength-to-weight ratio, good formability, and satisfying corrosion resistance; thus, it is very often used in automotive and aerospace applications. However, the main limitation of using this alloy is its low yield strength and ductility. The equal-channel angular pressing is a processing tool that allows one to obtain ultrafine-grained or nanomaterials, with exceptional mechanical and physical properties. The purpose of the paper was to analyze the influence of the ECAP process on the structure and hardness of the AlSi10Mg alloy, obtained by the selective laser melting process. Four types of samples were examined: as-fabricated, heat-treated, and subjected to one and two ECAP passes. The microstructure analysis was performed using light and electron microscope systems (scanning electron microscope and transmission electron microscope). To evaluate the effect of ECAP on the mechanical properties, hardness measurements were performed. We found that the samples that underwent the ECAP process were characterized by a higher hardness than the heat-treated sample. It was also found that the ECAP processing promoted the formation of structures with semicircular patterns and multiple melt pool boundaries with a mean grain size of 0.24 μm.
Zobrazit více v PubMed
Bai S., Perevoshchikova N., Sha Y., Wu X. The Effects of Selective Laser Melting Process Parameters on Relative Density of the AlSi10Mg Parts and Suitable Procedures of the Archimedes Method. Appl. Sci. 2019;9:583. doi: 10.3390/app9030583. DOI
Prashanth K., Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys. J. Alloys Compd. 2017;707:27–34. doi: 10.1016/j.jallcom.2016.12.209. DOI
Mfusi B.J., Mathe N.R., Tshabalala L.C., Popoola P.A. The Effect of Stress Relief on the Mechanical and Fatigue Properties of Additively Manufactured AlSi10Mg Parts. Metals. 2019;9:1216. doi: 10.3390/met9111216. DOI
Sames W.J., List F.A., Pannala S., Dehoff R., Babu S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016;61:315–360. doi: 10.1080/09506608.2015.1116649. DOI
Dong Z., Zhang X., Shi W., Zhou H., Lei H., Liang J. Study of Size Effect on Microstructure and Mechanical Properties of AlSi10Mg Samples Made by Selective Laser Melting. Materials. 2018;11:2463. doi: 10.3390/ma11122463. PubMed DOI PMC
Chen Y., Wang S., Hao Y., Pu J., Jiang X., Huang L.-F., Wang L. Friction and Wear Behavior of CrN Coating on 316L Stainless Steel in Liquid Sodium at Elevated Temperature. Tribol. Int. 2020;143:106079. doi: 10.1016/j.triboint.2019.106079. DOI
Hadadzadeh A., Baxter C., Amirkhiz B.S., Mohammadi M. Strengthening mechanisms in direct metal laser sintered AlSi10Mg: Comparison between virgin and recycled powders. Addit. Manuf. 2018;23:108–120. doi: 10.1016/j.addma.2018.07.014. DOI
Li Z., Li Z., Tan Z., Xiong D.-B., Guo Q. Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys. Int. J. Plast. 2020;127:102640. doi: 10.1016/j.ijplas.2019.12.003. DOI
Wu X., Zhu Y., Lu K. Ductility and strain hardening in gradient and lamellar structured materials. Scr. Mater. 2020;186:321–325. doi: 10.1016/j.scriptamat.2020.05.025. DOI
Rafieazad M., Mohammadi M., Gerlich A., Nasiri A. Enhancing the corrosion properties of additively manufactured AlSi10Mg using friction stir processing. Corros. Sci. 2021;178:109073. doi: 10.1016/j.corsci.2020.109073. DOI
Aboulkhair N.T., Tuck C., Ashcroft I., Maskery I., Everitt N. On the Precipitation Hardening of Selective Laser Melted AlSi10Mg. Met. Mater. Trans. A. 2015;46:3337–3341. doi: 10.1007/s11661-015-2980-7. DOI
Park T.-H., Baek M.-S., Hyer H., Sohn Y., Lee K.-A. Effect of direct aging on the microstructure and tensile properties of AlSi10Mg alloy manufactured by selective laser melting process. Mater. Charact. 2021;176:111113. doi: 10.1016/j.matchar.2021.111113. DOI
Gu D., Wang H., Chang F., Dai D., Yuan P., Hagedorn Y.-C., Meiners W. Selective Laser Melting Additive Manufacturing of TiC/AlSi10Mg Bulk-form Nanocomposites with Tailored Microstructures and Properties. Phys. Procedia. 2014;56:108–116. doi: 10.1016/j.phpro.2014.08.153. DOI
Gao C., Wang Z., Xiao Z., You D., Wong K., Akbarzadeh A. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties. J. Mater. Process. Technol. 2020;281:116618. doi: 10.1016/j.jmatprotec.2020.116618. DOI
Li X., Ji G., Chen Z., Addad A., Wu Y., Wang H., Vleugels J., Van Humbeeck J., Kruth J. Selective laser melting of nano-TiB 2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater. 2017;129:183–193. doi: 10.1016/j.actamat.2017.02.062. DOI
Chang F., Gu D., Dai D., Yuan P. Selective laser melting of in-situ Al4SiC4 + SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size. Surf. Coat. Technol. 2015;272:15–24. doi: 10.1016/j.surfcoat.2015.04.029. DOI
Han Q., Setchi R., Lacan F., Gu D., Evans S. Selective laser melting of advanced Al-Al2O3 nanocomposites: Simulation, microstructure and mechanical properties. Mater. Sci. Eng. A. 2017;698:162–173. doi: 10.1016/j.msea.2017.05.061. DOI
Gao C., Xiao Z., Liu Z., Zhu Q., Zhang W. Selective laser melting of nano-TiN modified AlSi10Mg composite powder with low laser reflectivity. Mater. Lett. 2019;236:362–365. doi: 10.1016/j.matlet.2018.10.126. DOI
Finfrock C., Exil A., Carroll J.D., Deibler L. Effect of Hot Isostatic Pressing and Powder Feedstock on Porosity, Microstructure, and Mechanical Properties of Selective Laser Melted AlSi10Mg. Met. Microstruct. Anal. 2018;7:443–456. doi: 10.1007/s13632-018-0456-z. DOI
Rosenthal I., Tiferet E., Ganor M., Stern A. Post-processing of AM-SLM AlSi10Mg specimens: Mechanical properties and fracture behaviour. Weld. Equip. Technol. 2015;26:33–38.
Bonneric M., Brugger C., Saintier N. Effect of hot isostatic pressing on the critical defect size distribution in AlSi7Mg0.6 alloy obtained by selective laser melting. Int. J. Fatigue. 2020;140:105797. doi: 10.1016/j.ijfatigue.2020.105797. DOI
Hirata T., Kimura T., Nakamoto T. Effects of hot isostatic pressing and internal porosity on the performance of selective laser melted AlSi10Mg alloys. Mater. Sci. Eng. A. 2020;772:138713. doi: 10.1016/j.msea.2019.138713. DOI
Yusuf S.M., Hoegden M., Gao N. Effect of sample orientation on the microstructure and microhardness of additively manufactured AlSi10Mg processed by high-pressure torsion. Int. J. Adv. Manuf. Technol. 2020;106:4321–4337. doi: 10.1007/s00170-019-04817-5. DOI
Hosseinzadeh A., Radi A., Richter J., Wegener T., Sajadifar S.V., Niendorf T., Yapici G.G. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys. J. Manuf. Process. 2021;68:788–795. doi: 10.1016/j.jmapro.2021.05.070. DOI
Snopiński P., Król M., Pagáč M., Petrů J., Hajnyš J., Mikuszewski T., Tański T. Effects of equal channel angular pressing and heat treatments on the microstructures and mechanical properties of selective laser melted and cast AlSi10Mg alloys. Arch. Civ. Mech. Eng. 2021;21:1–18. doi: 10.1007/s43452-021-00246-y. DOI
Furukawa M., Horita Z., Langdon T.G. Factors influencing the shearing patterns in equal-channel angular pressing. Mater. Sci. Eng. A. 2002;332:97–109. doi: 10.1016/S0921-5093(01)01716-6. DOI
Hadadzadeh A., Amirkhiz B.S., Mohammadi M. Contribution of Mg2Si precipitates to the strength of direct metal laser sintered AlSi10Mg. Mater. Sci. Eng. A. 2019;739:295–300. doi: 10.1016/j.msea.2018.10.055. DOI
Arechabaleta Z., van Liempt P., Sietsma J. Unravelling dislocation networks in metals. Mater. Sci. Eng. A. 2018;710:329–333. doi: 10.1016/j.msea.2017.10.099. DOI
Urrutia I.G., Muñoz-Morris M., Morris D. Contribution of microstructural parameters to strengthening in an ultrafine-grained Al–7% Si alloy processed by severe deformation. Acta Mater. 2007;55:1319–1330. doi: 10.1016/j.actamat.2006.09.037. DOI
Snopiński P., Król M. Microstructure, Mechanical Properties and Strengthening Mechanism Analysis in an AlMg5 Aluminium Alloy Processed by ECAP and Subsequent Ageing. Metals. 2018;8:969. doi: 10.3390/met8110969. DOI
Snopiński P., Tanski T., Matus K., Rusz S. Microstructure, grain refinement and hardness of Al–3%Mg aluminium alloy processed by ECAP with helical die. Arch. Civ. Mech. Eng. 2018;19:287–296. doi: 10.1016/j.acme.2018.11.003. DOI
Structural and Mechanical Changes of AlMgSi0.5 Alloy during Extrusion by ECAP Method