Revealing the strengthening contribution of stacking faults, dislocations and grain boundaries in severely deformed LPBF AlSi10Mg alloy

. 2023 Sep 27 ; 13 (1) : 16166. [epub] 20230927

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37759080

Grantová podpora
2021/43/D/ST8/01946 Narodowe Centrum Nauki

Odkazy

PubMed 37759080
PubMed Central PMC10533813
DOI 10.1038/s41598-023-43448-5
PII: 10.1038/s41598-023-43448-5
Knihovny.cz E-zdroje

In this study, microstructural features direct metal laser melted (DMLM) aluminium-silicon-magnesium (AlSi10Mg) are investigated using advanced transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The focus is on post-processing by ECAP (Equal Channel Angular Pressing) and its effects on grain refinement, stacking fault formation and dislocation accumulation. In addition, the strength enhancing role of stacking faults is for the first time quantified. The results show that ECAP can increase the yield strength from 294 to 396 MPa, while the elongation increases from 2.4% to 6%. These results show that ECAP processing offers a new approach for producing AlSi10Mg products with improved strength and ductility.

Erratum v

PubMed

Zobrazit více v PubMed

Mohammadi A, Enikeev NA, Murashkin MY, Arita M, Edalati K. Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation. J. Mater. Sci. Technol. 2021;91:78–89.

Kuang J, et al. Ductilizing Al-Mn strips via gradient texture. Mater. Res. Lett. 2023;11:430–438.

Valiev RZ, Langdon TG. Achieving exceptional grain refinement through severe plastic deformation: New approaches for improving the processing technology. Metall. Mater. Trans. A. 2011;42:2942–2951.

Edalati K, et al. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Mater. Res. Lett. 2022;10:163–256.

Zhou X, Fu H, Zhu J-H, Yang X-S. Atomistic simulations of the surface severe plastic deformation-induced grain refinement in polycrystalline magnesium: The effect of processing parameters. J. Magnes. Alloy. 2022;10:1242–1255.

Wan J, et al. Simultaneously enhancing strength and ductility of selective laser melted AlSi10Mg via introducing in-cell Al4C3 nanorods. Mater. Res. Lett. 2023;11:422–429.

Takata N, Liu M, Kodaira H, Suzuki A, Kobashi M. Anomalous strengthening by supersaturated solid solutions of selectively laser melted Al–Si-based alloys. Addit. Manuf. 2020;33:101152.

Padovano E, Badini C, Pantarelli A, Gili F, D’Aiuto F. A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion. J. Alloys Compd. 2020;831:154822.

Snopiński, P. Electron microscopy study of structural defects formed in additively manufactured AlSi10Mg alloy processed by equal channel angular pressing. Symmetry vol. 15 (2023).

Gong D, et al. In-situ TEM study on the effect of stacking faults on micro-plasticity and proportional limit in SiC/Al composites. Compos. Part B Eng. 2022;244:110180.

Fang L, et al. Ultrahard and super-stable pure aluminum with Schwarz crystal structure. Mater. Res. Lett. 2023;11:662–669.

Zhou D, et al. Stacking faults in a mechanically strong Al(Mg)–Al3Mg2 composite. Compos. Part B Eng. 2022;245:110211.

Wang P, et al. The role of cellular structure, non-equilibrium eutectic phases and precipitates on quasi-static strengthening mechanisms of as-built AlSi10Mg parts 3D printed via laser powder bed fusion. Mater. Charact. 2023;198:112730.

Chen B, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scr. Mater. 2017 doi: 10.1016/j.scriptamat.2017.07.025. DOI

Snopiński, P., Woźniak, A. & Pagáč, M. Microstructural evolution, hardness, and strengthening mechanisms in SLM AlSi10Mg alloy subjected to equal-channel angular pressing (ECAP). Materials (Basel).14, (2021). PubMed PMC

Guo B, et al. Exploiting the synergic strengthening effects of stacking faults in carbon nanotubes reinforced aluminum matrix composites for enhanced mechanical properties. Compos. Part B Eng. 2021;211:108646.

Shi Z, et al. Microstructural evolution and strengthening mechanisms of a novel Al–11Si–3Cu alloy microalloyed with minor contents of Sr and Sc. Mater. Sci. Eng. A. 2022;853:143738.

Hosseinzadeh A, et al. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys. J. Manuf. Process. 2021;68:788–795.

Al-Zubaydi ASJ, Gao N, Wang S, Reed PAS. Microstructural and hardness evolution of additively manufactured Al–Si–Cu alloy processed by high-pressure torsion. J. Mater. Sci. 2022;57:8956–8977.

Ghashghay BR, Abedi HR, Shabestari SG. On the capability of grain refinement during selective laser melting of AlSi10Mg alloy. J. Mater. Res. Technol. 2023;24:9722–9730.

Cheng X, et al. The effect of subsequent heating treatment on the microstructure and mechanical properties of additive manufactured Hastelloy X alloy. Mater. Charact. 2022;186:111799.

Yang Q, et al. Microstructure evolution of the TiB2/Al composites fabricated by powder metallurgy during hot extrusion. Mater. Charact. 2019;155:109834.

Hadadzadeh A, Shalchi Amirkhiz B, Odeshi A, Li J, Mohammadi M. Role of hierarchical microstructure of additively manufactured AlSi10Mg on dynamic loading behavior. Addit. Manuf. 2019 doi: 10.1016/j.addma.2019.04.012. DOI

Yaru L, et al. Aging temperature effects on microstructure and mechanical properties for additively manufactured AlSi10Mg. Mater. Sci. Technol. 2023;39:1223–1236.

Xu C, Huang J, Jiang F, Jiang Y. Dynamic recrystallization and precipitation behavior of a novel Sc, Zr alloyed Al-Zn-Mg-Cu alloy during hot deformation. Mater. Charact. 2022;183:111629.

Idrissi H, Carrez P, Cordier P. On amorphization as a deformation mechanism under high stresses. Curr. Opin. Solid State Mater. Sci. 2022;26:100976.

Cao Y, Zhang LC, Zhang Y. Twinning interactions induced amorphisation in ultrafine silicon grains. Mater. Sci. Eng. A. 2016;658:321–325.

Bu Y, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. Mater. Today. 2021;46:28–34.

Chen L, Li W, Luo M. Effect of stacking faults in nanograins on the tensile properties of Mg–Y–Nd–Gd–Zr alloys subjected to ultrasonic surface rolling processing. Surf. Coatings Technol. 2022;436:128305.

Casati R, Coduri M, Checchia S, Vedani M. Insight into the effect of different thermal treatment routes on the microstructure of AlSi7Mg produced by laser powder bed fusion. Mater. Charact. 2021;172:110881.

Marola S, et al. A comparison of selective laser melting with bulk rapid solidification of AlSi10Mg alloy. J. Alloys Compd. 2018 doi: 10.1016/j.jallcom.2018.01.309. DOI

Chen H, Patel S, Vlasea M, Zou Y. Enhanced tensile ductility of an additively manufactured AlSi10Mg alloy by reducing the density of melt pool boundaries. Scr. Mater. 2022;221:114954.

Damavandi E, Nourouzi S, Rabiee SM, Jamaati R, Szpunar JA. Effect of route BC-ECAP on microstructural evolution and mechanical properties of Al–Si–Cu alloy. J. Mater. Sci. 2021;56:3535–3550.

Moradi M, Nili-Ahmadabadi M, Heidarian B. Improvement of mechanical properties of AL (A356) cast alloy processed by ECAP with different heat treatments. Int. J. Mater. Form. 2009;2:85.

Song D, et al. Developing a high-strength Al–11Si alloy with improved ductility by combining ECAP and cryorolling. Mater. Sci. Eng. A. 2020;773:138880.

Damavandi E, Nourouzi S, Rabiee SM, Jamaati R. Effect of ECAP on microstructure and tensile properties of A390 aluminum alloy. Trans. Nonferrous Met. Soc. China. 2019;29:931–940.

Anuar NFBW, Salleh MS, Omar MZ, Yahaya SH. Mechanical properties and dry sliding wear behaviour of Al–Si–Mg alloy by equal channel angular pressing. AIMS Mater. Sci. 2022;9:733–749.

Li P, et al. Microstructural origin of the anisotropic flow stress of laser powder bed fused AlSi10Mg. Acta Mater. 2021;220:117346.

Wu H, et al. Selective laser melted AlSi10Mg alloy under melting mode transition: Microstructure evolution, nanomechanical behaviors and tensile properties. J. Alloys Compd. 2021;873:159823.

Li W, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater. Sci. Eng. A. 2016 doi: 10.1016/j.msea.2016.03.088. DOI

Xiong ZH, et al. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater. Sci. Eng. A. 2019;740–741:148–156.

Huang S, Guo S, Zhou B, Zhang G, Zhang X. Microstructure and properties of AlSi7Mg alloy fabricated by selective laser melting. China Foundry. 2021;18:416–423.

Medrano VA, et al. A comprehensive and comparative study of microstructure and mechanical properties for post-process heat treatment of AlSi7Mg alloy components fabricated in different laser powder bed fusion systems. J. Mater. Res. Technol. 2023;24:6820–6842.

Snopiński P, Matus K, Tatiček F, Rusz S. Overcoming the strength-ductility trade-off in additively manufactured AlSi10Mg alloy by ECAP processing. J. Alloys Compd. 2022;918:165817.

Bharath C, Shamanth V, Hemanth K. Studies on mechanical behaviour of AlSi10Mg alloy produced by Selective Laser Melting and A360 alloy by die casting. Mater. Today Proc. 2021;45:78–81.

Girelli L, Tocci M, Gelfi M, Pola A. Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy. Mater. Sci. Eng. A. 2019;739:317–328.

Dong X, Zhu X, Ji S. Effect of super vacuum assisted high pressure die casting on the repeatability of mechanical properties of Al-Si-Mg-Mn die-cast alloys. J. Mater. Process. Technol. 2019;266:105–113.

Yan Q, Song B, Shi Y. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. J. Mater. Sci. Technol. 2020;41:199–208.

Liao XZ, et al. Formation mechanism of wide stacking faults in nanocrystalline Al. Appl. Phys. Lett. 2004;84:3564–3566.

Wang M, et al. Mechanical properties and electrical conductivity of cold rolled Al-7.5wt%Y alloy with heterogeneous lamella structure and stacking faults. J. Alloys Compd. 2021;882:160692.

Xu W, Zhang B, Du K, Li XY, Lu K. Thermally stable nanostructured Al-Mg alloy with relaxed grain boundaries. Acta Mater. 2022;226:117640.

Bufford D, et al. Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett. 2013;1:51–60.

Zuo JD, et al. Heterophase interface-mediated formation of nanotwins and 9R phase in aluminum: Underlying mechanisms and strengthening effect. Acta Mater. 2019;174:279–288.

Hunter A, Beyerlein IJ. Stacking fault emission from grain boundaries: Material dependencies and grain size effects. Mater. Sci. Eng. A. 2014;600:200–210.

Zhang YF, et al. Size dependent strengthening in high strength nanotwinned Al/Ti multilayers. Acta Mater. 2019;175:466–476.

Sahu BP, Wu W, Wang J, Misra A. Deformation behavior of crystalline/amorphous Al-Si nanocomposites with nanolaminate or nanofibrous microstructures. Phys. Rev. Mater. 2022;6:94002.

Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT. Deformation twins in nanocrystalline Al. Appl. Phys. Lett. 2003;83:5062–5064.

Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 2012;57:1–62.

Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 2002;1:45–49. PubMed

Babu PN, Pal S. Molecular dynamics simulation on creep-ratcheting behavior of columnar nanocrystalline aluminum. J. Mol. Graph. Model. 2023;118:108376. PubMed

Shu X, et al. Size effect on the deformation mechanisms of nanocrystalline platinum thin films. Sci. Rep. 2017;7:13264. PubMed PMC

Lei T, Shin J, Gianola DS, Rupert TJ. Bulk nanocrystalline Al alloys with hierarchical reinforcement structures via grain boundary segregation and complexion formation. Acta Mater. 2021;221:117394.

Cao Y, Ni S, Liao X, Song M, Zhu Y. Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Eng. R Rep. 2018;133:1–59.

Eom YS, et al. Fine-tuning of mechanical properties of additively manufactured AlSi10Mg alloys by controlling the microstructural heterogeneity. J. Alloys Compd. 2023;956:170348.

Zhang XX, et al. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation. Mater. Des. 2021 doi: 10.1016/j.matdes.2020.109339. DOI

Chen CL, Richter A, Thomson RC. Mechanical properties of intermetallic phases in multi-component Al-Si alloys using nanoindentation. Intermetallics. 2009 doi: 10.1016/j.intermet.2009.02.003. DOI

Liu Y, et al. Dislocation array reflection enhances strain hardening of a dual-phase heterostructured high-entropy alloy. Mater. Res. Lett. 2023;11:638–647.

Biffi CA, Fiocchi J, Tuissi A. Laser Weldability of AlSi10Mg Alloy Produced by Selective Laser Melting: Microstructure and Mechanical Behavior. J. Mater. Eng. Perform. 2019;28:6714–6719.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...